A review of 0.5 degree global hourly air temperature datasets

Xubin Zeng
University of Arizona
Aihui Wang
Institute of Atmospheric Physics, China

6 May 2015 NLDAS Telecon

Our global 0.5° hourly T data

We have developed global 0.5°x0.5°, hourly land surface air temperature data sets by merging the in situ data (CRU) with various reanalyses (MERRA, ERA-Int, ERA-40, NCEP) (Wang and Zeng, 2013).

Our value-added data sets have exactly the same monthly mean values of daily maximum (Tx) and minimum (Tn) temperatures as those from CRU.

rda.ucar.edu/datasets/ds193.0/.index.html

Reanalysis Ta vs. point measurements in July

How realistic and consistent are reanalysis Ta?

After our adjustment using CRU data

Clim. Diff.

Each adjusted reanalysis gives exactly the same Tmax, Tmin, (and Tm) as CRU data

After our adjustment using CRU data

MDTR (based on daily Tx and Tn)

RMDT (based on monthly-averaged diurnal cycle)

http://rda.ucar.edu/datasets/ds193.0/

Wang and Zeng (2014)

Suggestion on the next NLDAS Ta forcing data

- Using the same methodology in Wang and Zeng (2013) to develop hourly land surface air temperature data for the NLDAS domain
- Consider using multiple forcing to drive LSMs, as the dispersion may be as large as that from multiple models with the same forcing

Wang, A. and X. Zeng, 2013: Development of Global Hourly 0.5° Land Surface Air Temperature Datasets. J. Climate, 26, 7676–7691.

doi: http://dx.doi.org/10.1175/JCLI-D-12-00682.1