Recent updates on the NLDAS Science Testbed

David M. Mocko^{1,2}, Sujay V. Kumar¹, Christa D. Peters-Lidard¹, Shugong Wang^{1,2}, Kristi Arsenault^{1,2}, Yudong Tian^{1,3}, Youlong Xia^{4,5}, Michael B. Ek⁴, Jiarui Dong^{4,5}

The North American Land Data Assimilation System (NLDAS) is a collaborative project between NOAA/NCEP, NASA/GSFC, Princeton Univ., Univ. of Washington, and NOAA/OHD, and is supported by the NOAA Climate Program Office's Modeling Analysis, Predictions, and Projections (MAPP) Program.

Acknowledgements: Grey Nearing, Augusto Getirana, Jim Geiger, Bailing Li, Ken Mitchell, John Schaake, and numerous members of both the NLDAS and LIS teams over the last 15+ years

1 – NASA/GSFC; 2 – SAIC; 3 – Univ. MD; 4 – NOAA/NCEP/EMC; 5 – IMSG

NLDAS Science Testbed

The LIS group has developed an NLDAS Science Testbed, designed to test LSMs, parameters, and data assimilation within the **Land Information System (LIS)** using the NLDAS configuration. These simulations are also being evaluated against the four operational LSMs running in NLDAS Phase 2.

- Spin-Up: 70 years (1979 to 2014 twice) and then running 1979 to 2015
- Evaluation period: (2002-2012; 11 years with the most evaluation data)

• Output:

- Monthly water/vegetation states during the two spin-up periods
- Daily output during the third simulation of all relevant energy/water terms
- Evaluation: Using the Land Verification Toolkit (LVT) to evaluate soil moisture, snow, ET/fluxes, surface radiation, runoff, streamflow, groundwater, etc.

Soil Moisture – anomaly correlations

SM evaluations show: 1) CLSM-F2.5 does not do as well as Mosaic; 2) Noah-3.x versions are improved over Noah-2.8; 3) Noah-MP slightly better than Noah-3.x; 4) Noah-MP dynamic veg. does about as well as default Noah-MP; and 5) VIC-4.1.2.l does not do as well as VIC-4.0.3.

Soil Moisture – anomaly correlations

Soil Moisture – anomaly correlations

Streamflow – AC and monthly cycle

Streamflow evaluations show: 1) CLSM-F2.5 does not do as well as Mosaic, and has low values for streamflow; 2) Noah-3.x performs similarly to Noah-2.8; 3) Noah-MP is slightly worse than Noah-3.x; and 4) VIC-4.1.2.I has higher streamflow and is improved over VIC-4.0.3.

Streamflow – NSE

Groundwater – Anomaly correlations

Groundwater evaluations show: 1) CLSM-F2.5 does better than Noah-MP; and 2) Noah-MP dynamic vegetation does slightly worse than default Noah-MP.

Groundwater – Anomaly correlations

Fluxes

Latent heat flux evaluations show: 1) CLSM-F2.5 has high latent heat and VIC-4.1.2.1 has low latent heat; 2) Noah-3.x has higher latent heat than Noah-2.8, with Noah-MP in the middle; and 3) other reference datasets (ALEXI, MOD16, UW ET) don't compare better to FLUXNET than LSMs

Evaporation over Precipitation

Evaporation over Precipitation

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Runoff over Precipitation

Runoff over Precipitation

0.3

The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets

D. G. Miralles^{1,2}, C. Jiménez³, M. Jung⁴, D. Michel⁵, A. Ershadi⁶, M. F. McCabe⁶, M. Hirschi⁵, B. Martens², A. J. Dolman¹, J. B. Fisher⁷, Q. Mu⁸, S. I. Seneviratne⁵, E. F. Wood⁹, and D. Fernández-Prieto¹⁰

Three different models partitioned the ET _very_ differently. These are GLOBAL percentages of total ET (2005-2007).

Miralles et al., 2016, Hydrol. Earth. Syst. Sci.

http://www.hydrol-earth-syst-sci.net/20/823/2016/

NLDAS-2 LSMs (1980-2013)		A A A A A A A A A A A A A A A A A A A	GLEAM v3.0a		Reference/ LSM	Qle [W/m ²]
		-2013)			GLEAM v3.0a	37.2 [*]
					FLUXNET	37.7 [**]
				Pie charts	N2 Mosaic	46.7
					N2 Noah-2.8	33.5
				and values in the table	N2 VIC-4.0.3	31.9
				are area- averaged	CLSM-F2.5	45.2
				over the NLDAS	Noah-3.6	44.4
Mosaic	Noah-2.8	VIC-4.0.3	torcontion	domain 1980-2013	MP WRF default	38.7
			Interception	[*] - converted	MP dynamic veg	37.4
NLDAS Science Testbed			oil evap.	from [mm day ⁻¹] [**] - 1984-2007	MP Noah-like	38.1
			ranspiration	climatology	VIC-4.1.2.I	33.8
	Naph 2.6					
CLSM-F2.5	Noah-3.6	Noah-MP-3.6 WRF default	Noah-MP-3.6 dynamic veg.	Noah-MP- Noah-lik		4.1.2.

Regional estimation of base flow for the conterminous United States by hydrologic landscape regions

USGS - 18 Water Resources Regions Santhi et al., 2008, J. Hydrology 0 - 10 10 - 2020 - 30- 40 - 50 50 - 6060 - 70**BFI calculated using:** 70 - 80 80 - 90 **USGS Base Flow index (Wolock, 2003)** No Data

Figure 1 USGS grid map of the base flow index (in %) for the conterminous United States developed from USGS BFI method.

BFI is defined as the baseflow divided by the total runoff.

In the LSMs using the ALMA convention:

BFI = Qsb / (Qs + Qsb)

doi:10.1016/j.jhydrol.2007.12.018

http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_013190.pdf

141

Santhi et al. (2008), J. Hydrology

Figure 2 Grid map of the base flow index (in %) for the conterminous United States developed from digital filter method.

BFI is defined as the baseflow divided by the total runoff.

In the LSMs using the ALMA convention:

BFI = Qsb / (Qs + Qsb)

doi:10.1016/j.jhydrol.2007.12.018 http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_013190.pdf (a) Estimated BFI (-) from Wolock [2003]

(b) Median estimated BFI (-) from this study

(c) Observed BFI (-) from this study

Figure 13. Map of the conterminous USA showing (a) estimated BFI from *Wolock* [2003], (b) median estimated BFI from this study, and (c) observed BFI. In (b) only values for the conterminous USA are shown. The BFI values in (a) were computed using a different method than the BFI values in (b) and (c). The maps have limits 25–48°N and 125–70°W and grid lines at every 10° latitude and 15° longitude.

Beck et al., 2013, WRR

doi:10.1002/2013WR013918, 2013 http://onlinelibrary.wiley.com/doi/10.1002/2013WR013918/abstract

The different methodologies and the observed BFI values all generally show the same features:

- 1) Higher BFI in the western U.S. high terrain
- 2) Lower BFI in the central U.S.
- 3) Pocket regions of higher BFI on the east side of the Appalachians and in the Northeast
- 4) High BFI around the western Great Lakes
- 5) High BFI in the Sandhills region (Nebraska)

BFI = Qsb / (Qs + Qsb)

Other areas of development

- CLM-4.5 LSM has been integrated into the LIS software and will be evaluated in the NLDAS environment
- RUC LSM is also in LIS and is being evaluated for NLDAS
- Adding new evaluations to the Testbed (updated North American Soil Moisture Database, GLEAM ET and soil moisture, etc.)
- Evaluating the NLDAS router against the HyMAP router
- Testing Noah-MP various options (vegetation, canopy stomatal resistance, runoff/groundwater, surface layer drag coeff., etc.)
- Looking to improve performance of CLSM-F2.5 or later version

http://ldas.gsfc.nasa.gov/nldas/

David.Mocko@nasa.gov

