NASA and Land Surface Data Assimilation

or

NASA Contributions to GCIP Objectives in Remote Sensing and Land Surface Modeling

Paul R. Houser

NASA Goddard Space Flight Center
Hydrological Sciences Branch

And the NLDAS, GLDAS, NSIPP, CLM, DAO, LIS teams

Christa Peters-Lidard, Jeff Walker, Jared Entin, Brian Cosgrove, Jon Radakovich, Mike Bosilovich, Dave Toll, Matt Rodell, Urszula Jambor, Jon Gottschalk, Kristi Arsenault, Jesse Meng, Aaron Berg, Chaojiao Sun, Guiling Wang

Ken Mitchell, John Schaake, Eric Wood, Dennis Lettenmaier, Alan Robock, Jeff Basara, Paul Dirmeyer
The Truth about DIHYDROGEN MONOXIDE

Dihydrogen Monoxide (DHMO) is perhaps the single most prevalent of all chemicals that can be dangerous to human life. Despite this truth, most people are not unduly concerned about the dangers of Dihydrogen Monoxide. Governments, civic leaders, corporations, military organizations, and citizens in every walk of life seem to either be ignorant of or shrug off the truth about Dihydrogen Monoxide as not being applicable to them.

- also known as hydric acid, and is the major component of acid rain.
- contributes to the greenhouse effect.
- may cause severe burns.
- contributes to the erosion of our natural landscape.
- accelerates corrosion and rusting.
- may cause electrical failures and decreased effectiveness of automobile brakes.
- has been found in excised tumors.

Write your Congressman!
Get the T-Shirt, Only $18.95!
Why study the water cycle?...

Earth is a water planet!

Water is Life...

Variations in greenhouse gases, aerosols, and solar activity force changes in climate...

…but, **consequences** of climate change are **realized through the water cycle**.

Thus, we must **characterize**, **understand**, and **predict** variations in the **global water cycle** and assess potential abrupt climate changes.
We aim to characterize, understand, and predict variability in the global water cycle, which involves complex interactions between atmospheric, physical, biogeochemical processes, and human activities.

- Current predictions of precipitation and hydrologic phenomena lack skill.

- Hydrologic research is well poised to pull together our water-cycle expertise and make real progress toward answering grand-challenge water cycle questions
We need an overarching vision for water cycle research that we can agree on and organize around.

Improve water cycle prediction

This vision encompasses the essential elements of the GEWEX, NASA-ESE and USGCRP science plans, while maintaining clear deliverables, metrics and applications.

This will require critical center, national, and international science and technology partnerships.

GAPP aims to address role of land surface in climate prediction based on:

- New understanding
- New observations
- New models

And use improved predictions for better water resource applications
Current state of climate-change science

Global Precipitation

We’ve observed global warming in the last century and our models can “match” this warming, but our ability to quantify significant trends or simulate hydrologic (i.e. precipitation) variations is inadequate.
Water Cycle Research: From Observations to Consequences

Understanding

- Analysis
- Observations
- Monitoring
- Validation
- Assimilation
- Initialization

Consequences | Predictions | Models

NASA is the U.S. space agency and should exploit its unique capabilities for space-based observations to promote scientific understanding.
Observation Strategy

Input - Output = Storage Change

Transport + Evaporation - Precipitation – Runoff - P
= ΔLand Storage + ΔWater Vapor
Global Water Cycle: Diagnose and Identify Predictable Changes

Current Capabilities

Ocean temperatures and vegetation

El Nino

April 1983

La Nina

April 1989

SST Anomaly (°C)

Vegetation Index Anomaly

Measuring Changes in Ice Cover

TRMM Precipitation Observations

Rate of Change in Icecap Height (cm/year)

-60 -20 2 +20 +60
OBJECTIVE: Understand the horizontal and vertical structure of rainfall and its microphysical element. Provide training for constellation radiometers.

OBJECTIVE: Provide enough sampling to reduce uncertainty in short-term rainfall accumulations. Extend scientific and societal applications.

Core Satellite
- Dual Frequency Radar
- Multi-frequency Radiometer
- H2-A Launch
- TRMM-like Spacecraft
- Non-Sun Synchronous Orbit
- ~65° Inclination
- ~400 - 500 km Altitude
- ~4 km Horizontal Resolution (Maximum)
- 250 m Vertical Resolution

Constellation Satellites
- Multiple Satellites with Microwave Radiometers
- Aggregate Revisit Time, 3 Hour goal
- Sun-Synchronous Polar Orbits
- ~600 km Altitude

Global Precipitation Processing Center
- Capable of Producing Global Precip Data Products as Defined by GPM Partners

Precipitation Validation Sites
- Global Ground Based Rain Measurement
What we propose to do

Exploratory Observations

Soil Moisture Mission

Understand the impact of soil moisture and on flood/drought prediction, weather forecasting, and agriculture.

Global soil moisture observation using microwave observations
Cold Seasons Experiment/Mission

Cold-Seasons Hydrology Mission:

Daily average air temperature

NSCAT freeze-thaw state

Cold Seasons Hydrology Experiment
Colorado, 2002-2005

Don Cline, National Operational Hydrologic Remote Sensing Center
HYDROS: HYDROSpheric States mission

HYDROS is a proposed NASA ESSP mission to make the first spaceborne observations of global soil water availability (moisture and freeze/thaw) that enable new scientific investigations of atmospheric predictability and global change processes.

Dara Entekhabi (MIT PI)
Paul R. Houser (GSFC Project Scientist)
Eni Njoku (JPL Project Scientist)

In response to the 2001 NASA ESSP-3 Proposal Solicitation:
Target Launch: 2006
Global Water-Cycle: Observation Strategy

Future: Water Cycle Mission
Observation of water molecules through the atmosphere and land surface using an active/passive hyperspectral microwave instrument.

Primary missing global observations: Precipitation, Soil Moisture, Snow

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Spatial Resolution</th>
<th>Temporal Resolution</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater</td>
<td>50 km</td>
<td>2 weeks</td>
<td>100 MHz?</td>
</tr>
<tr>
<td>Soil Moisture</td>
<td>10 km</td>
<td>3 days</td>
<td>1.4 GHz</td>
</tr>
<tr>
<td>Salinity</td>
<td>50 km</td>
<td>2 weeks</td>
<td>1.4 GHz</td>
</tr>
<tr>
<td>Freeze/thaw</td>
<td>1 km</td>
<td>1 day</td>
<td>1.2 GHz</td>
</tr>
<tr>
<td>Rain</td>
<td>5 km</td>
<td>3 hour</td>
<td>10-90 GHz</td>
</tr>
<tr>
<td>Falling Snow</td>
<td>5 km</td>
<td>3 hour</td>
<td>150 GHz</td>
</tr>
<tr>
<td>Snow</td>
<td>1-5 km</td>
<td>1 day</td>
<td>10-90 GHz</td>
</tr>
<tr>
<td>TPW (sea)</td>
<td>10 km</td>
<td>3 hour</td>
<td>6-37 GHz</td>
</tr>
<tr>
<td>TPW (land)</td>
<td>10 km</td>
<td>3 hour</td>
<td>183 GHz</td>
</tr>
<tr>
<td>Temperature</td>
<td>10 km</td>
<td>3 hour</td>
<td>6-37 GHz</td>
</tr>
<tr>
<td>ET (4DDA)</td>
<td>5 km</td>
<td>3 hour</td>
<td>1.4-90 GHz</td>
</tr>
</tbody>
</table>
Modeling Strategy
Global Warming Scenarios

Water-Cycle Prediction Strategy

Existing Climate Models

- Advance Understanding and Model Physics
- Improve Initialization & Assimilation
- Diagnose and Identify Predictable Changes

Integrated Water-Cycle Observation System: In-Situ and Space-Based Observing Programs

Next-generation Global Water-Cycle Prediction System

Water-cycle Prediction

- Precipitation Data
 - 30 GCMs vs. Observations
 - Graph showing trends from 1979 to 1993
Global Water Cycle: Advance Understanding and Model Physics

Climate models’ grid-box representation of Earth’s processes...

Each grid-box can only represent the “average” conditions of its area.

However, controlling processes of the water cycle (e.g. precipitation) vary over much smaller areas.

How can climate models effectively represent the controlling processes of the global water cycle?

“Conventional” approach: make the model grid-boxes smaller (increase resolution)
 - Slow progress: may take ~50 years to be computationally feasible

Breakthrough approach: **Simulate a sample** of the small-scale physics and dynamics using high resolution **process-resolving models** within each climate model grid-box
 - “Short-cut” the conventional approach (~10 years to implement)
Global Water Cycle: Using Observations with Models to Improve Predictions

- DAO (A. Hao) has demonstrated significant model improvement by assimilating TRMM precipitation data.
- Transfer to NOAA through Joint NOAA-NASA Center for Data Assimilation

TRMM Precipitation

DAO Hurricane Simulation

Simulated Hurricane in NASA/NCAR 0.5x0.625 Model Precip (mm/hr) and 850mb Wind

1800 UTC 15 SEP

1800 UTC 16 SEP

1800 UTC 17 SEP

1800 UTC 18 SEP
Hydrologic Applications: The Paradigm Lock

......based on outdated knowledge and technology

Process science

research

ideas

understanding

Isolated by lack of proven utility

Water managers and stakeholders

design

output

implementation

Isolated by legal and professional precedence

Accepted practices
Do we need better water resource management?

- We are experiencing dramatic population increases.
- We must find a sustainable balance between water resources for humans and ecosystems.
- Current management is complicated by uncertain global change, strong heterogeneity in ecology and topography, and rapid land use change.
- Ultimately, there is a limited supply of water that will meet limited needs.

Science and technology can help to maximize the use of limited resources, through:
- **Characterization** of current conditions, limits, and hazards.
- Enabling basic process **understanding** (complex groundwater, snow, riparian, runoff, infiltration, and atmospheric water interactions).
- Developing reliable short to long term **prediction** capabilities.

We must also have links between the science/technology and stakeholders.
- Science and technology must be defined by application needs.
- We must understand **management and policy** (i.e. understand and predict human behavior, water banking, management, and operations)
- Must have aggressive **education** of the public, stakeholders, policymakers, and **scientists**.
- We must develop science/technology that is **useful** to water resource managers.
We know Earth science and technology has the potential to broadly improve water application….

So, why isn’t improved research and technology always resulting in improved applications?

- Inadequate *understanding of application needs* results in less useful science and technology investments.
- Inadequate availability of *technology* (we currently lack useful water resource observations).
- Inadequate *integration of information* (we currently lack informative predictions).

So, what can we do about this?

Improved prediction of consequences is the key.
Homeland Security

- A critical homeland security issue is the vitality of our environment - primarily defined by availability and quality of air and water resources.
- Homeland security efforts must therefore include:
 - Advances to understand, assess, and predict natural and human-induced variations in our environment that can enable retooled policies and planning, allocation of resources, and partnership strategies.
 - Scientists and stakeholders have become isolated: scientists by the lack of proven utility of their findings and stakeholders by legal and professional precedence and disaggregated institutions.
 - Communication must be established to get information to users fast, to evaluate various response options in a prediction system, enable planning, and to ultimately take decisive mitigation action.
Global Water Cycle: Linking Science to Consequences

End-to-end coordination enabling understanding and prediction of the Earth’s water cycle system: Research driven by the needs of society

To deliver social, economic and environmental benefit to stakeholders through sustainable and appropriate use of water by directing water cycle science towards improved integrated water system management
To deliver social, economic and environmental benefit to stakeholders through sustainable and appropriate use of water by directing hydrological science towards improved integrated catchment management

- **WHAT IS THE REQUIRED PRODUCT?** hydrological research which is directly responsive to water-related policy and development issues.

- **WHAT IS THE NATURE OF THE INITIATIVE?** a global network of experimental hydrological catchments in a range of bio-climatic zones and socio-economic conditions freely exchanging data and understanding

- **HOW WILL IT OPERATE?**
 - multi-disciplinary, involving managers, policy makers and scientists
 - “bottom up” selection of the science to be undertaken
 - use existing networks where possible
 - complementary to other water-related international programmes
 - new data and knowledge, and capacity building, if required
Problem of Observation Integration

Due to its importance, hydrologic data availability will increase.

Complete quantification of hydrologic variability requires innovative organization, comprehension, and integration of diverse hydrologic information due to disparity in observation type, scale, and error.

<table>
<thead>
<tr>
<th>Hydrologic Quantity</th>
<th>Remote-Sensing Technique</th>
<th>Time Scale</th>
<th>Space Scale</th>
<th>Accuracy Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>Infrared</td>
<td>1hr</td>
<td>4km</td>
<td>Tropical convective clouds only</td>
</tr>
<tr>
<td></td>
<td>Passive microwave</td>
<td>3hr</td>
<td>10km</td>
<td>Land calibration problems</td>
</tr>
<tr>
<td></td>
<td>Active Microwave</td>
<td>10day</td>
<td>10m</td>
<td>Land calibration problems</td>
</tr>
<tr>
<td>Surface Soil Moisture</td>
<td>C or L-band radar</td>
<td>10day</td>
<td>10m</td>
<td>Significant noise from vegetation and roughness</td>
</tr>
<tr>
<td></td>
<td>C- or L- band radiometer</td>
<td>1-3day</td>
<td>10km</td>
<td>Limited to sparse vegetation, low topographic relief</td>
</tr>
<tr>
<td>Surface Skin Temperature</td>
<td>infrared</td>
<td>1hr</td>
<td>10m</td>
<td>Soil/vegetation average, cloud contamination</td>
</tr>
<tr>
<td>Snow Cover</td>
<td>visible/infrared</td>
<td>1hr</td>
<td>10m</td>
<td>Cloud contamination, vegetation masking, bright soil problems</td>
</tr>
<tr>
<td>Snow Water Equivalent</td>
<td>passive microwave</td>
<td>1-3day</td>
<td>10km</td>
<td>Limited depth penetration</td>
</tr>
<tr>
<td></td>
<td>active microwave</td>
<td>10day</td>
<td>10m</td>
<td></td>
</tr>
<tr>
<td>Water level/velocity</td>
<td>laser</td>
<td>10day</td>
<td></td>
<td>Cloud penetration problems</td>
</tr>
<tr>
<td></td>
<td>radar</td>
<td>10day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total water storage changes</td>
<td>gravity changes</td>
<td>30day</td>
<td>1000km</td>
<td>Bulk water storage change</td>
</tr>
<tr>
<td>Evaporation</td>
<td>IR and Models</td>
<td>1hour</td>
<td>4km</td>
<td>Significant assumptions</td>
</tr>
</tbody>
</table>
Land Data Assimilation Systems: Motivation

Quantification and prediction of hydrologic variability
- Critical for initialization and improvement of weather/climate forecasts
- Critical for applications such as floods, agriculture, military operations, etc.

Maturing of hydrologic observation and prediction tools:
- **Observation:** Forcing, storages (states), fluxes, and parameters.
- **Simulation:** Land process models (Hydrology, Biogeochemistry, etc.).
- **Assimilation:** Short-term state constraints.

The “GSFC-Land Working Group” – DAO, NSIPP, LDAS
Background: Land Surface Observations

Precipitation: Remote-Sensing: SSM/I, TRMM, AMSR, GOES, AVHRR
 In-Situ: Surface Gages and Doppler Radar

Radiation: Remote-Sensing: MODIS, GOES, AVHRR
 In-Situ: DOE-ARM, Mesonets, USDA-ARS

Surface Temperature: Remote-Sensing: AVHRR, MODIS, SSM/I, GOES
 In-Situ: DOE-ARM, Mesonets, NWS-ASOS, USDA-ARS

Soil Moisture: Remote-Sensing: TRMM, SSM/I, AMSR, HYDROS, ESTAR, NOHRSC, SMOS
 In-Situ: DOE-ARM, Mesonets, Global Soil Moisture Data Bank, USDA-ARS

Groundwater: Remote-Sensing: GRACE
 In-Situ: Well Observations

Snow Cover, Depth & Water: Remote-Sensing: AVHRR, MODIS, SSM/I, AMSR, GOES, NWCC, NOHRSC
 In-Situ: SNOTEL

Streamflow: Remote-Sensing: Laser/Radar Altimeter
 In-Situ: Real-Time USGS, USDA-ARS

Vegetation: Remote-Sensing: AVHRR, TM, VCL, MODIS, GOES
 In-Situ: Field Experiments

Others: Soils, Latent & Sensible heat fluxes, etc.
Background: Land Surface Modeling

Land Surface Prediction: Accurate land model prediction is essential to enable data assimilation methods to propagate or extend scarce observations in time and space. Based on water and energy balance.

Input - Output = Storage Change
\[P + G_{in} - (Q + ET + G_{out}) = \Delta S \]
\[R_n - G = L_e + H \]

Mosaic (Koster, 1996):
- Based on simple SiB physics.
- Subgrid scale "mosaic"

CLM (Community Land Model, ~2001):
- Community developed “open-source” model.
- 10 soil layers, 5 layer snow scheme.

Catchment Model (Koster et al., 2000):
- Models in catchment space rather than on grids.
- Uses Topmodel concepts to model groundwater

NOAA-NCEP-NOAH Model (NCEP, ~2001):
- Operational Land Surface model.

Also: vic, bucket, SiB, etc.
Data Assimilation merges observations & model predictions to provide a superior state estimate.

\[\frac{\partial x}{\partial t} = \text{dynamics} + \text{physics} + \Delta x \]

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated with a land surface model prediction.

Errors in land model prediction result from:
- Initialization error.
- Errors in atmospheric forcing data.
- Errors in LSM physics (model not perfect).
- Errors in representation (sub-grid processes).
- Errors in parameters (soil and vegetation).
Background: Data Assimilation

Data Assimilation Methods: Numerical tools to combine disparate information.

\[
A \otimes B \otimes \mathbf{K} \mathbf{W}_{ik} \left[O_k \bigotimes B_k \right]_k \otimes 1
\]

1. Direct Insertion, Updating, or Dynamic Initialization:

2. Newtonian Nudging:

3. Optimal or Statistical Interpolation:

4. Kalman Filtering: EKF & EnKF

5. Variational Approaches - Adjoint:

GOAL: Understand algorithm differences to use the most appropriate method for the problem to be addressed.
Data Assimilation merges observations & model predictions to provide a superior state estimate.

\[
\frac{\partial x}{\partial t} = \text{dynamics} + \text{physics} + \Delta x
\]

Remotely-sensed hydrologic state or storage observations (temperature, snow, soil moisture) are integrated into a hydrologic model to improve prediction, produce research-quality data sets, and to enhance understanding of complex hydrologic phenomenon.
NOTE:
Assimilation of near-surface soil moisture can degrade profile soil moisture if errors are not known perfectly.
Snow Assimilation:

- In the northern hemisphere the snow cover ranges from 7% to 40% during the annual cycle.
- The high albedo, low thermal conductivity and large spatial/temporal variability impact energy/water budgets.
- Sno/bare soil interfaces cause wind circulations.
- Direct replacement does not account for model bias.
Develop a Kalman filter snow assimilation to overcome current limitations with assimilation of snow water equivalent, snow depth, and snow cover.

- Investigate novel snow observation products such as snow melt signature and fractional snow cover.
- Provide a basis for global implementation.

Unique Snow Data Assimilation Considerations:
- “Dissappearing” layers and states
- Arbitrary redistribution of mass between layers
- Lack of information in SWE about snow density or depth
- Lack of information in snow cover about snow mass & depth
- Biased forcing causing divergence between analysis steps
Snapshots on 3/16/1987 from truth, assimilation and control runs. The assimilation and control runs start from the same poor initial condition on 1/1/1987. Here, a), d), g) Snow water equivalent (SWE, in mm); b), e) h) snow depth (in mm), and c), f), i) snow temperature (in °C). The results are plotted over 24 continuous catchments.
DAO-PSAS Assimilation of ISCCP (IR based) Surface Skin Temperature into a global 2 degree uncoupled land model.

Surface temperature has very little memory or inertia, so without a continuous correction, it tends drift toward the control case very quickly.
Fraternal Twin Studies

“Truth” from one model is assimilated into a second model with a biased parameterization.
The “truth” twin can be treated as a perfect observation to help illustrate conceptual problems beyond the assimilation procedure.

We must not only worry about obtaining an optimal model constraint, but also understand the implications of that constraint.
Water Resource Applications

- Collaborating with other agencies, e.g., the U.S. Bureau of Reclamation, to integrate the use of LDAS products in water resource management issues.

- Developing retrospective studies and working to maintain land surface model simulations in both near real-time and forecast settings to be used by water resource managers and policy/decision makers.

- Evaluation of NLDAS in on-going case investigations to monitor and forecast extreme flooding and drought events.

- Produce successful demonstration of these applications-based studies and begin applying to other countries facing water resource-related issues.
Precipitation evaluation

DAO GEOS Model Derived / Precip (MM/DAY) / Jul - Dec 2001

NCEP GDAS Model Derived / Precip (MM/DAY) / Jul - Dec 2001

NRL Geostationary IR / Precip (MM/DAY) / Jul - Dec 2001

NRL Microwave / Precip (MM/DAY) / Jul - Dec 2001

Univ of Arizona PERSIANN / Precip (MM/DAY) / Jul - Dec 2001

CPC Higgins Gauge / Precip (MM/DAY) Jul - Dec 2001
Surface SW_{down} flux evaluation; June 2001

Geostationary Observed

AGRMET daily-mean SW Flux [W/m2], July 2001

NASA-DAO Model

Geostationary Observed

NOAA-NCEP Model
GLDAS Results

Geostationary observations are critical to GLDAS because of their high temporal repeat.
Land Information System: A high-performance extension of GLDAS

LIS components:
(1) A high-resolution (1km) Global Land Data Assimilation System running several land surface models, land surface data assimilation, and integrated database operations.
(2) A web-based user interface for data mining, modeling, and visualization.
(3) A portable platform-independent, web-database system.
(4) Explicit integration to the Earth System Modeling Framework (ESMF).

Data can be remotely accessed and analyzed from a GUI, web page, or model code.
GLDAS: CEOP Synergy

CEOP and GLDAS have value-added synergy:

- Test and evaluate multiple land surface hydrologic models
- **Long term** land model baseline experiments and intercomparisons
- **Linking of reference sites** with globally consistent observation and modeling to enable GEWEX-CSE land transferability studies.
- **Initialize land** surface states for seasonal-to-interannual coupled predictions.
- Use GLDAS to **evaluate** NWP and climate predictions for land.
- Integrate remote sensing land observations in land/atmospheric modeling for use in CEOP and higher level understanding.
- GLDAS may serve as a CEOP **data integration center**.
- Data assimilation and modeling may serve as a **quality control check** on observations.
- 4DDA “value-added” GLDAS-CEOP datasets

GLDAS views CEOP as an opportunity for increased community involvement and coordinated validation through data set development and continuity.
Water Cycling Research: coupling LDAS results

- **Objective:** To better understand the water cycle by quantifying geographic sources (local and remote) of precipitating water. Soil water anomalies likely affect the local continental source of water for precipitation in the monsoon (e.g. Atlas et al. 1993).

- Controlled sensitivity experiments can be performed, using GLDAS initial conditions for the FVGCM.

- Using realistic perturbations, what is the impact of wet and dry anomalies on the monsoon precipitation, and the relative sources of water.

North America: Water evaporates from the Caribbean Sea moving westward (white isosurface) as the circulation changes this water is transported northward into the US. (The red isosurface shows water that has evaporated from the central US)

Bosilovich and Schubert, 2002; Bosilovich 2002
Land Data Assimilation: Selected Future Challenges

Data Assimilation Algorithm Development: *Link calibration and assimilation* in a logical and mutually beneficial way and move towards *multivariate assimilation* of data with complementary information.

Land Observation Systems: Regular provision of *snow, soil moisture, and surface temperature* with knowledge of *observation errors*.

Land Modeling: Better *correlation* of land model states with observations, and knowledge of *prediction errors* and *Advanced processes: River runoff/routing, vegetation and carbon dynamics, groundwater interaction*.

Assimilate new types of data: *Streamflow, vegetation dynamics, groundwater/total water storage (Gravity), evapotranspiration*.

Coupled feedbacks: Understand the impact of land assimilation feedbacks on coupled system predictions.
A Vision for the Water Cycle Research?

Improve Water Cycle Prediction