

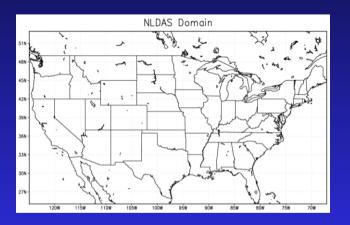
Real-time and Retrospective Forcing in the North American Land Data Assimilation System (N-LDAS) Project

Brian A. Cosgrove NASA Goddard Space Flight Center / SAIC

Paul Houser, Kenneth Mitchell, <u>Dag Lohmann</u>, Eric Wood, Justin Sheffield, John Schaake, Qingyun Duan, Alan Robock, Lifeng Luo, Dennis Lettenmaier, Jesse Meng, Wayne Higgins, Rachel Pinker, Dan Tarpley, Ying Lin

Background

- NLDAS project seeks to provide accurate, near-real-time and retrospective land surface states over North America
- Quality of land surface model (LSM) output is closely tied to the quality of the meteorological forcing data used to drive the model
- Model and observation-based data used to create highquality forcing data used by Mosaic, NOAH, VIC, Sacramento and CLM LSMs
 - Retrospective (1996-2000, NASA)
 - Real-time (1999-Present, NOAA)



Forcing Data Specifics

Hourly files

■ 1/8th Degree (~15 km) over central North America

- GRIB format, ~2 megabytes per file
- C-shell scripts, Fortran programs used to automatically generate and archive forcing
- Quality controlled, adjusted for terrain height
- 15 Model and observation-based fields

Forcing File Contents

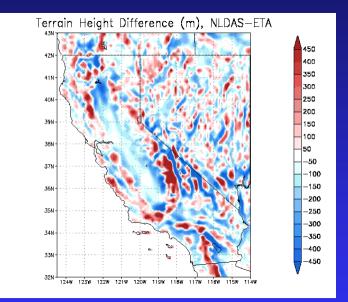
Nine primary fields used by LDAS LSMs

Model Based	Observation Based
2 Meter temperature	Downward shortwave radiation
2 Meter specific humidity	Doppler/gauge/model based precipitation
Surface Pressure	
U wind component	
V wind component	
Downward longwave radiation	
Convective Precipitation	

Six secondary fields available for additional modeling and validation efforts

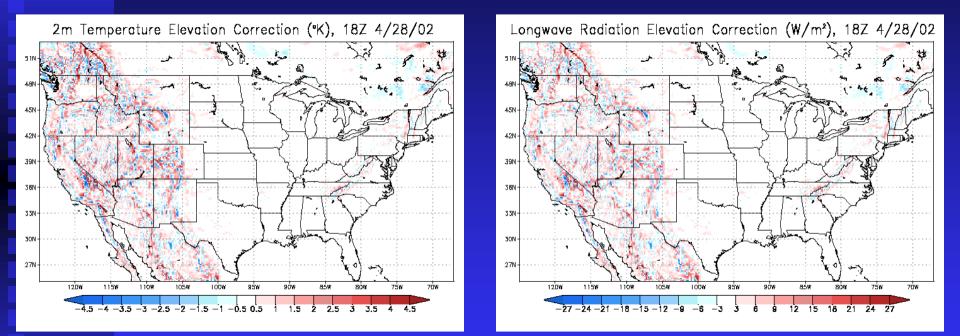
Model Based	Observation Based
Downward shortwave radiation	Skin temperature
Total precipitation	PAR
Convective available potential energy (CAPE)	Doppler radar total precip

Forcing File Creation — EDAS/ETA


- Observations not always available, so EDAS/ETA data used as base
 - EDAS, 3 hourly, AWIPS212 (40km)
 - ◆ ETA, 3 and 6 hourly, AWIPS 212 (40km)
- Spatially interpolated to 1/8th degree
- Temporally interpolated to hourly data
- Quality controlled using ALMA ranges

Terrain Height Adjustment

ETA temperature, pressure, humidity and longwave radiation adjusted for differences in ETA versus LDAS terrain height

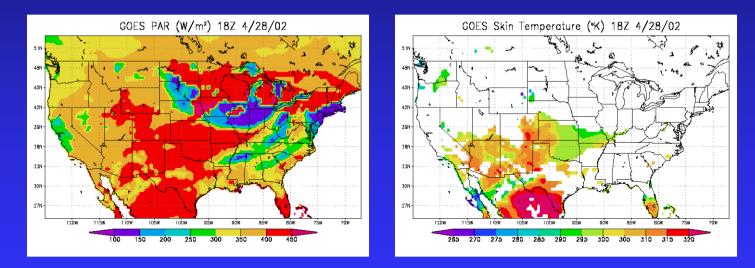


Temperature and pressure corrected using standard lapse rate
Specific humidity and longwave radiation corrected by holding relative humidity constant

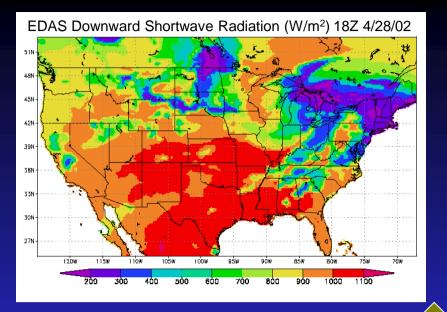
Terrain Height Adjustment

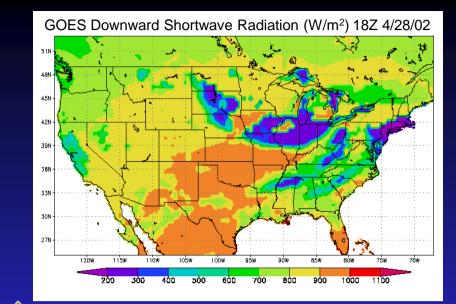
Corrections of up to 6K, 120mb, 40W/m², 2 g/kg

Observations

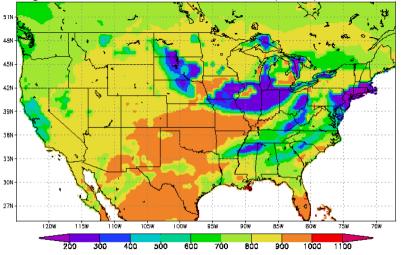

- Model-based data subject to model error, so observations used when possible
- Radiation
 - GOES-UMD downward shortwave
 - ♦ GOES-UMD PAR
 - GOES-UMD skin temperature
- Precipitation
 - Stage II hourly Doppler radar/RFC gauge data
 - CPC daily gauge data
 - CPC reprocessed daily gauge data

Observed Radiation

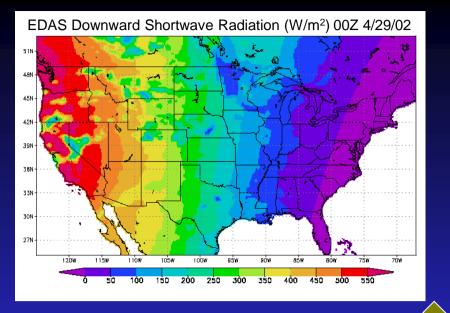

- GOES data processed at UMD to create ¹/₂ degree, hourly, instantaneous surface downward shortwave radiation, PAR and skin temperature fields
 - ◆ Interpolated to 1/8th degree

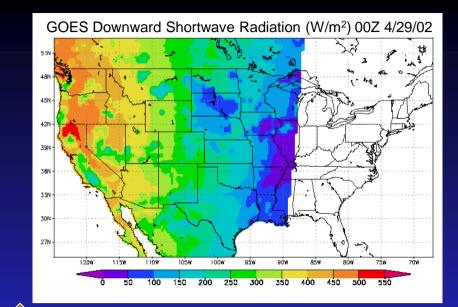


 GOES shortwave radiation is zenith angle corrected, used in place of ETA data when possible

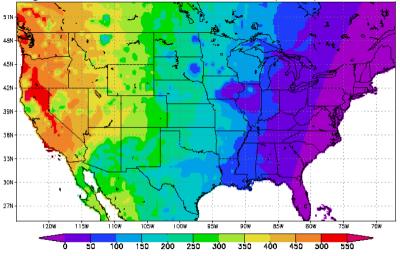


Merged Downward Shortwave Radiation (W/m²) 18Z 4/28/02


Combine

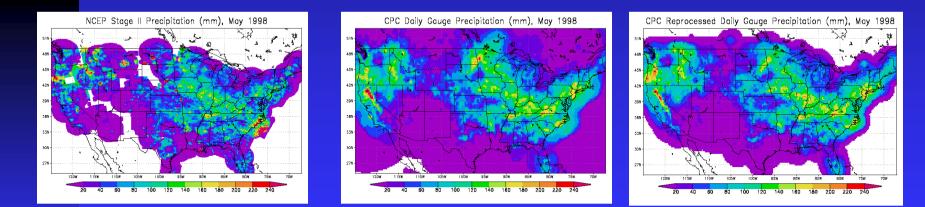


 ♦ GOES defined over entire domain, so EDAS not used in merged product



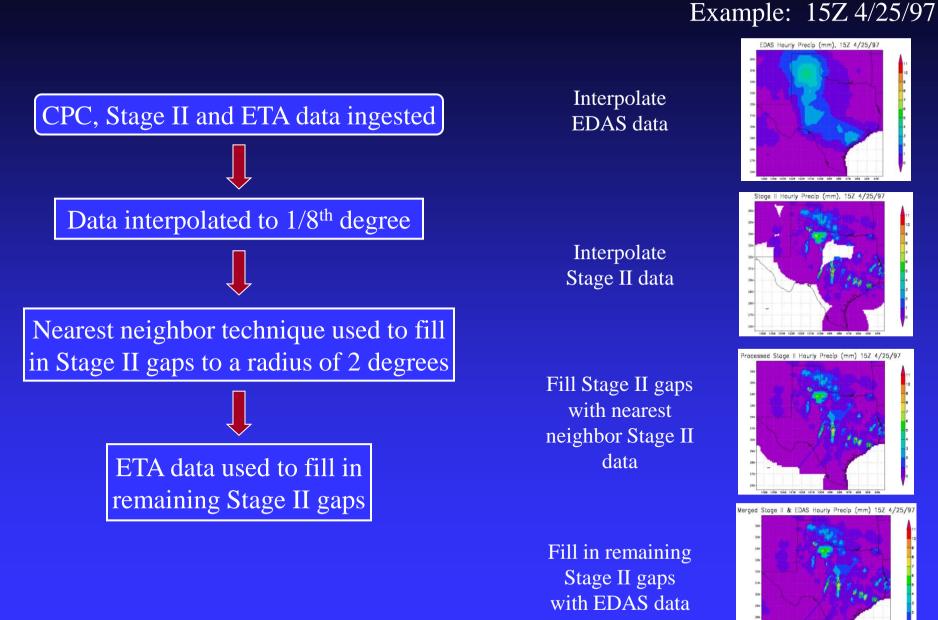
Merged Downward Shortwave Radiation (W/m²) 00Z 4/29/02

Combine


♦ GOES undefined at low sun angles over eastern seaboard, so EDAS used in merged product as filler over this region

Observed Precipitation

	Data	Advantages	Disadvantages
NC	CEP Stage II Doppler radar / RFC gauge	Hourly, 4km	Errors in radar magnitude
			Holes in coverage
	CPC daily rain gauge data	Accurate	Coarse temporal resolution
			Sparse coverage over Canada, Mexico
			0.25 Degree Resolution
C	PC Reprocessed daily rain gauge data	Most accurate	Coarse temporal resolution
		(additional stations	Light coverage over Canada, Mexico
		and qc checks)	0.25 Degree Resolution
			Only through 1998

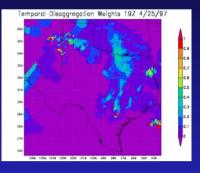


Make use of ETA, Stage II and CPC data to form best available product—a temporally disaggregated hourly CPC value

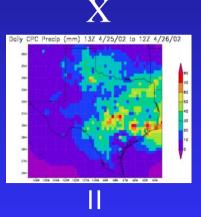
Temporal Disaggregation Process

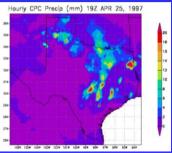
Temporal Disaggregation Process

Hourly Stage II values divided by daily Stage II sum to create hourly temporal disaggregation weights

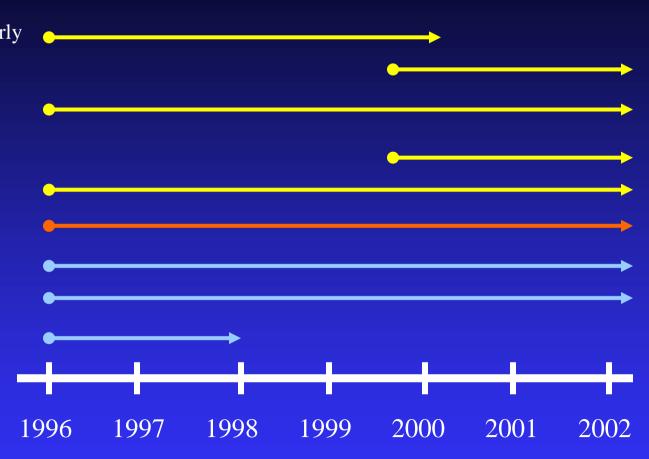

Hourly weights applied to daily CPC data to arrive at hourly CPC values

Key Points:


*Stage II data used only to derive temporal disaggregation weights *Sum of hourly CPC data values equals original daily CPC gauge total


Derive hourly temporal disaggregation weights

Multiply by daily CPC total


Arrive at hourly CPC precipitation value

Forcing Data Archive

NLDAS Retrospective Hourly NLDAS Real Time Hourly EDAS 3 Hourly ETA 3 Hourly ETA 6 Hourly UMD/GOES Hourly StageIV Hourly Precip CPC Daily Precip Reprocessed CPC Precip

General Data Radiation Precipitation

Conclusions

Model and observation based data merged to create robust, accurate 1/8th degree hourly forcing data set

- EDAS/ETA data serves as base
- ◆ GOES, Stage II and CPC data used to augment data set
- Common set of forcing integral to LDAS LSM intercomparisons
- Six years archived, with production occurring daily
- Validation effort proceeding (presentation by Lifeng Luo)
- Visit ldas.gsfc.nasa.gov for further details on project

