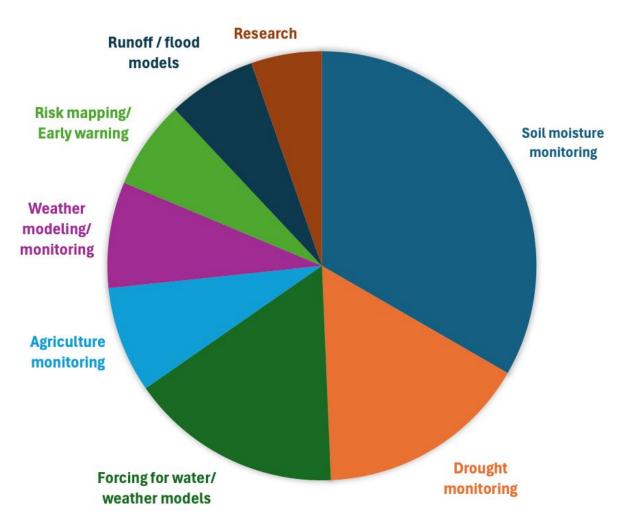


NASA WATER INSIGHT PROJECT

NLDAS-3 Drought Monitoring Workshop April 10, 2025

Workshop Agenda

2:00	Welcome Remarks	Chris Hain, NASA MSFC Karen St. Germain, NASA HQ Veva Deheza, NOAA NIDIS Mark Svoboda, UNL/NDMC
2:10	NLDAS-3 Updates	Sujay Kumar, NASA GSFC
2:30	Examples of NLDAS-3 Applications	Jonathan Case, ENSCO/MSFC Brian Fuchs, UNL/NDMC Mike Hobbins, CIRES/NOAA
3:15	Break	
3:20	Data Access, Analysis, Feedback	Sid Chaudhary, UAH/MSFC
3:30	Needs and Capabilities - Breakout Discussions 1 - Meteorology/ Model Forcings/ DA 2- Applications/ Downstream Products	Kim Locke, SAIC/GSFC Fadji Maina, UMBC/GSFC Kristen Whitney, UMD/GSFC David Mocko, SAIC/GSFC Ryan Wade, UAH/MSFC Molly Woloszyn, CIRES/NOAA NIDIS
4:20	Wrap Up Discussion & Next Steps	Chris Hain, NASA MSFC


What's New in NLDAS-3

Dr. Sujay Kumar

NASA Goddard Space Flight Center

Summary of Stakeholder Feedback

HOW DO STAKEHOLDERS USE NLDAS?

Specific NLDAS Uses from Previous Workshops

- Drought and flood operations
- Wildfire risk and prescribed burn planning
- NWP model data input
- Climatologies/Anomalies
- Generating refET for EDDI
- Runoff/soil saturation for flood and landslide risk
- Forcing for snow models
- Building ML/DL models
- Watershed modeling

Previous Feedback on Priority Needs

High-priority Model Improvements:

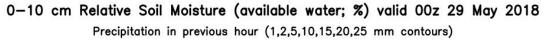
- Decreased output latency
- Better forcing data quality
- Finer spatial resolution
- Assimilation of observational data
- Expanding the model spatial domain
- Atmospheric forcing datasets back to 1980, for historical context
- Easier data access
- Choice of output formats
- Consistent datasets

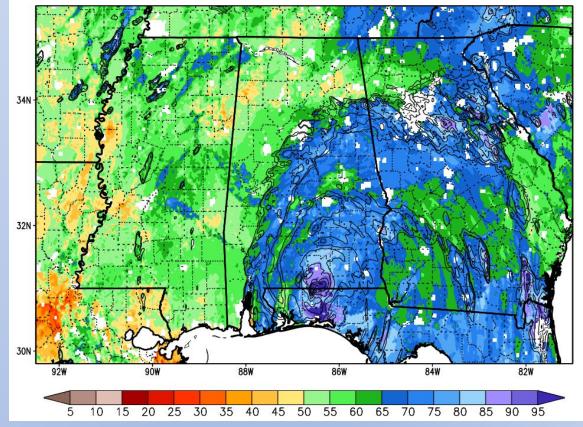
Requests for Derived Products and Applications:

- Soil moisture percentiles and outlooks
- Drought percentiles, indices, and forecasts
- ET and PET products
- Soil hydrologic conductivity
- Modeled ET and runoff
- GIS-enabled data
- Weekly change maps
- Model uncertainty information

Requests for Derived Products and Applications

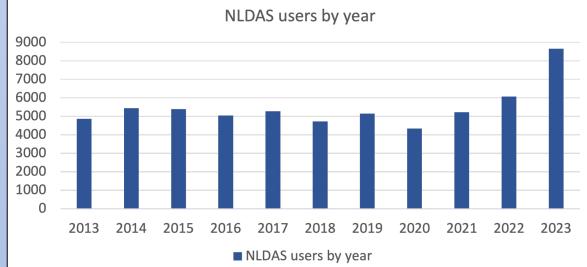
From Today's Workshop Registration Responses:

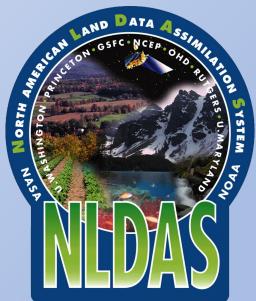

- Reference evapotranspiration (Penman-Monteith PET), actual evapotranspiration, EDDI, SPEI
- FAO56 PET (we currently rely on GridMET)
- Soil moisture percentiles crop yields
- Climatology and percentiles
- Experimental forecast products; derived fields
- Enhance accuracy of U.S. Drought Monitor and as inputs into our other operational combined drought indicators
- Flash drought detection
- River and flood modeling


Near Real-time NLDAS-3 Product System

What do stakeholders need?

- User-centric design of the product system
- Low latency
- Easy to use formats
- Integration into decision-support systems
- Derived products
- Essential Agricultural Variables (proposed by NASA Acres/Harvest)
- What else?


We have collected and started to integrate stakeholder feedback into the product system.

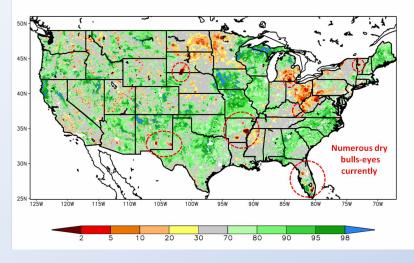


North American Land Data Assimilation System (NLDAS)

- NLDAS is a widely used land modeling environment, operational at NOAA.
- The number of unique users of NLDAS-2 data just from the NASA GES DISC has grown to over ~8,500 per year – plus users who get data from NOAA.
- Used by numerous different stakeholders and science groups:
 - UNL/NDMC/drought.gov/state-level agencies
 - NOAA/NWS, NOAA/CPC, NOAA/PSL (EDDI)
 - GRACE-DA, OpenET, WWAO, WLDAS, QuickDRI
 - USGS, EPA, FEMA, CUAHSI, USDA
 - NASA SPoRT and their stakeholders
 - State-level climate offices, Private enterprises

Enhancing NLDAS for the Future

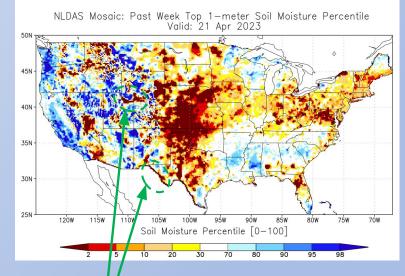
- Put the "DA" into NLDAS adding data assimilation capabilities to take advantage of unique NASA observations, allowing us to resolve the combined natural and human impacts on the water and energy cycle.
- Build on previous joint efforts with NOAA, with these priorities:
 - Use a modern land-surface model (including groundwater, prognostic phenology), and a modern river routing model (including streamflow, river depth, floodplains, etc.)
 - Reduce the ~4-day latency of current NLDAS-2 and enable forecasting capabilities
 - Make NLDAS "North American" (including AK, HI, and PR) and include Central America
 - Improve the quality of NLDAS forcing data
 - Move to a finer spatial scale of the datasets
- Transition to stakeholders via NASA SPoRT.


Resolving Stakeholders' Issues

NLDAS-2

time=01jan-31dec1999

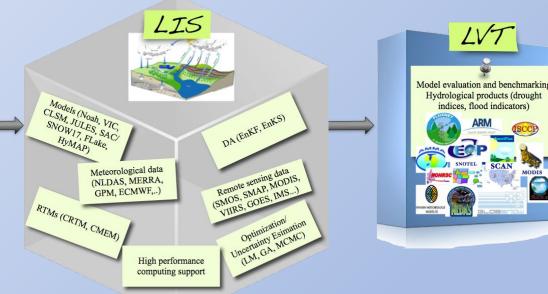
sum(APCPsfc)/25.4


SPoRT-LIS 0-2 m RSM percentile valid 18 Jan 2016

Recurring/persistent dry bulls-eyes in precipitation and soil moisture from QC issues in the daily gauge analysis. Cross-border (U.S.-Canada) precipitation issues related to the blending scheme between different input products.

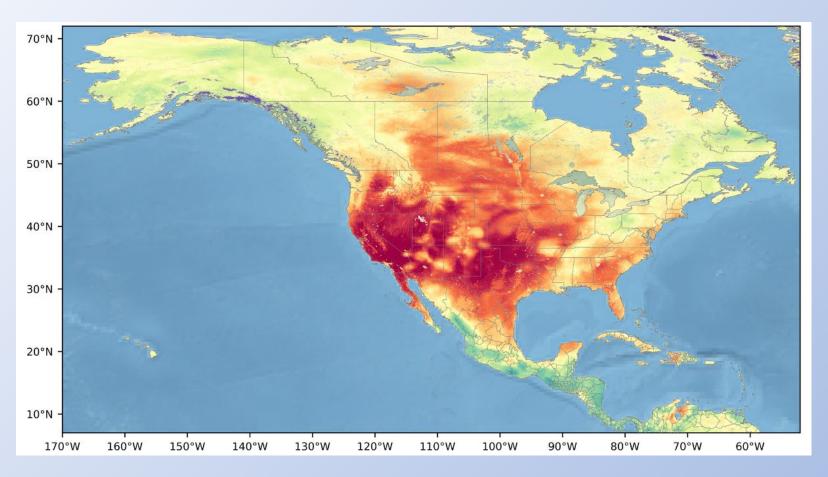
inches

24 28 32 36


Change in interpolation scheme in January 2012 affected soil moisture climatologies (esp. in intermountain West and along U.S.-Mexico border).

There are many downstream and value-added data products that rely on the quality of NLDAS forcing and model outputs.

Use NASA's LIS software for multivariate data assimilation in modern LSM



- Use NASA's Land Information System (LIS) software framework.
- Assimilate remotely-sensed products (soil moisture, snow, TWS, vegetation).
- Use a modern state-of-the-art land-surface model (LSM) Noah-MP.
- Use a modern state-of-the-art river routing model HyMAP.
- Websites: <u>https://lis.gsfc.nasa.gov/</u> <u>https://github.com/NASA-LIS/LISF</u>

NLDAS-3 vs. -2 Domain and Grid Spacing

NLDAS-3

Grid spacing: 1.0-km Grid: 11,700 x 6,500 points Domain: 7.0 - 72.0 North -169.0 - -52.0 West Land points: 27,245,580

NLDAS-2

Grid spacing: 12.5-km Grid: 464 x 224 points Domain: CONUS (25-53 North) Land points: 76,088

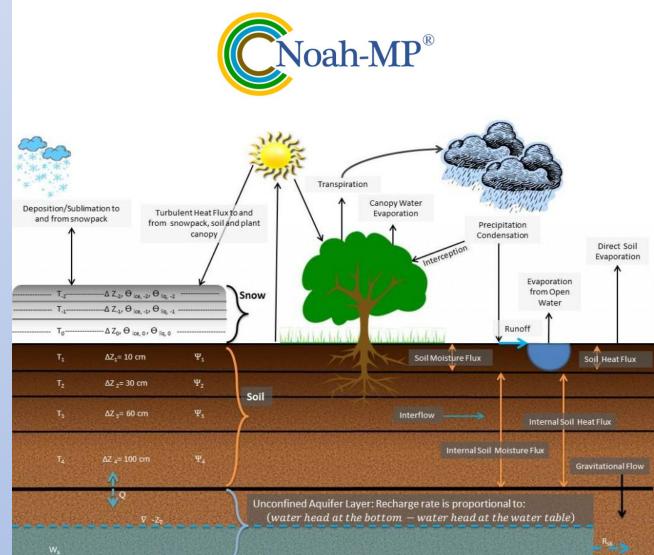
The huge increase in the number of land points for NLDAS-3, combined with the ensembles needed for DA, will require significant computational resources.

A NASA Data-driven Meteorological Forcing in Retrospective and Real Time

Precipitation Products	Latency	Spatial	Temporal		
		Resolution	Resolution		
IMERG Final (IMERG-	~3.5 months	0.1°	30 min		
F)					
IMERG Early (IMERG-	\sim 4 hours	0.1°	30 min		
E)					
MERRA-2	Third week of the	0.5°*0.625° hourly			
	following month				
GEOS-IT	~7 hours	0.5°*0.625°	hourly		
CaPA (RDRS for	<7 hours	10 km	24-hourly		
retrospective and RDPA					
for near real-time)					

Datrospactivo

We are considering two products:


- "Full DA" product: Starting ~2000, which is when many remotely-sensed DA products and IMERG begin
- "Open Loop" product: Starting ~1980, with no data assimilation

<u>Retrospective</u>	<u>Near Keal-Time</u>			
	Present			
MERRA-2 (~3 weeks)		GEOS-IT	(~7hrs)	
2018	2019 Present			
CaPA rdrs (completed)	CaPA rdpa (<7hrs)			
	Present			
IMERG Final (~3.5 month	IMERG E (~7 hrs)			
	Present			
Rain Gauge Observations	Rain Gauge C	Observations		

Maar Daal Th

Data Assimilation and Modeling

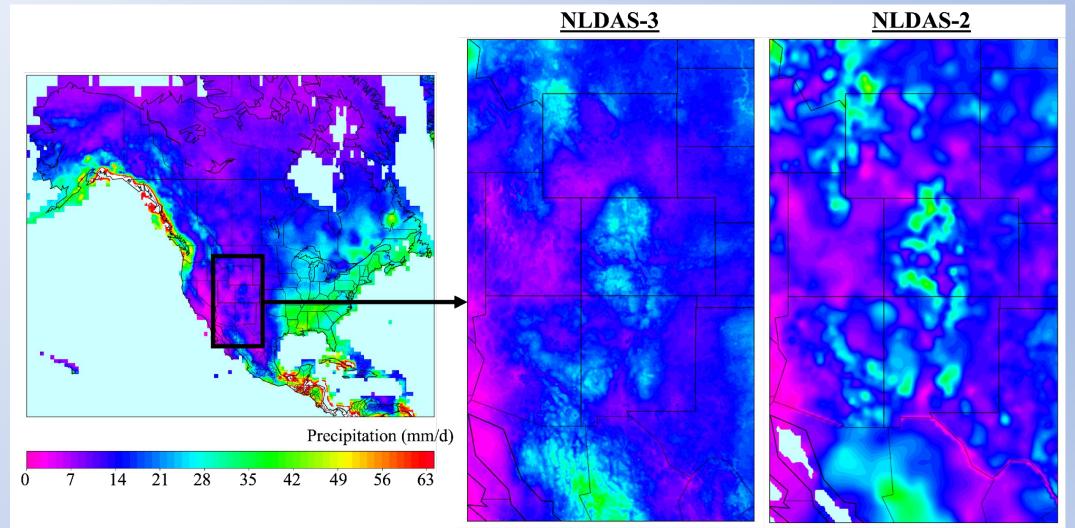
- Noah-MP LSM (managed by NCAR) is used in several other systems (NWM, WRF, UFS, etc.).
- Contains advanced physics, including 3-layer snow physics, etc. For NLDAS-3, we will use options for groundwater and for prognostic phenology.
- Assimilated data products:
 - Soil moisture (SMAP, AMSR-E, etc.)
 - Snow (Optical, passive microwave, ML)
 - MODIS/VIIRS 4-day LAI
 - o GRACE/GRACE-FO TWS
 - SWOT (river height into HyMAP river routing model – in development)
 - Future: NISAR, other upcoming missions

Late and Early "full DA" NLDAS-3 Products

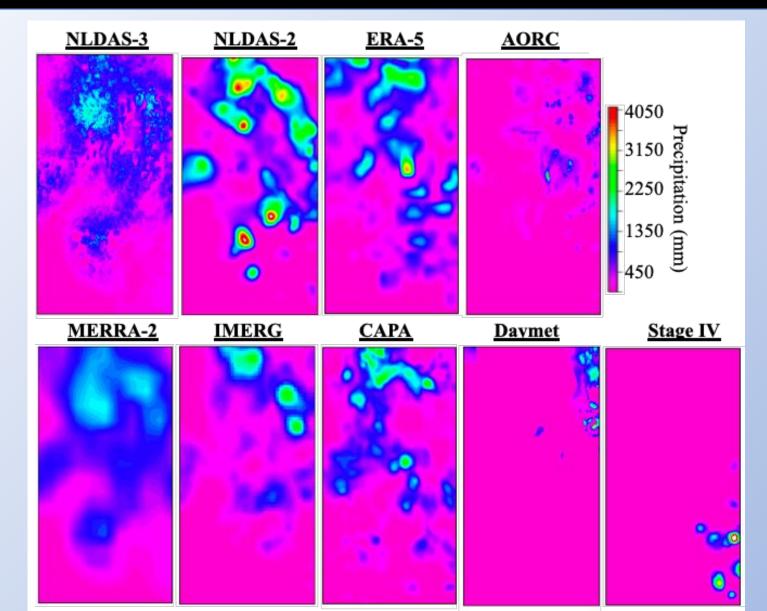

Final NLDAS-3 product ("Late Look")

- MERRA-2 surface meteorology and background for precipitation analysis (product has ~3 weeks latency)
- IMERG Final (product has ~3.5 months latency)
- GRACE/GRACE-FO TWS assimilation (product has ~3-4 months latency)
- Soil moisture, snow, vegetation DA
- Serves as "best possible" analysis for most accurate quantification of all key water cycle components
- Will be produced for the full period of record

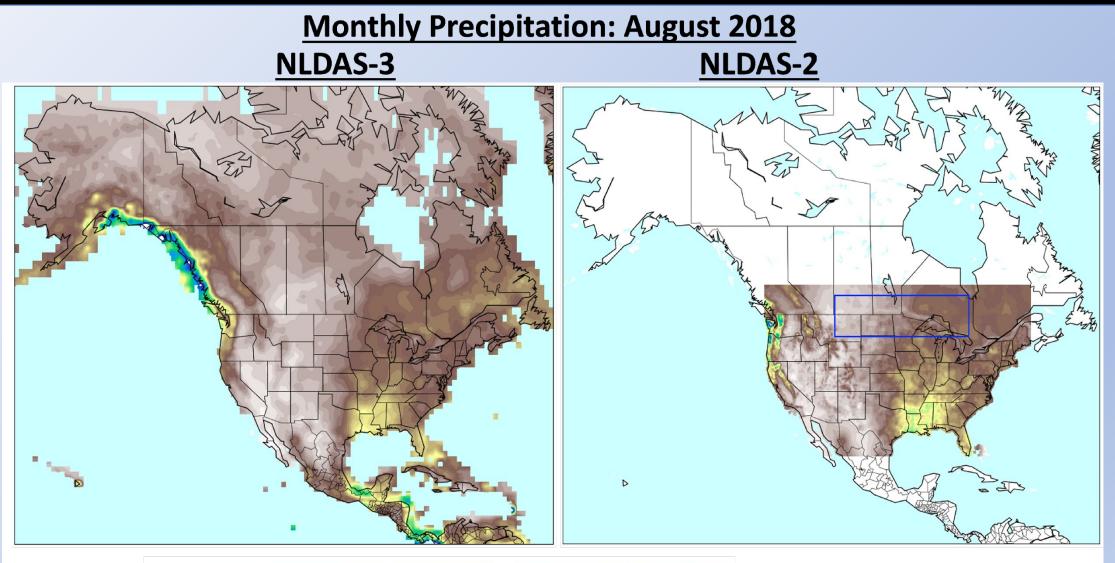
Near real-time NLDAS-3 product ("Early Look")

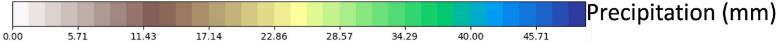

- Latency of about ~7 hours (1x per day)
- NASA's GEOS-IT surface meteorology and background for precipitation analysis
- IMERG Early
- Near real-time DA for soil moisture, snow, vegetation
- When the Final product is updated, the Early run will restart from the latest available Final states, and continue to real-time (planning for monthly update)
- Will be provided for the gap between the late-look and near-time period.

What goes into NLDAS-3 meteorology (precipitation)?

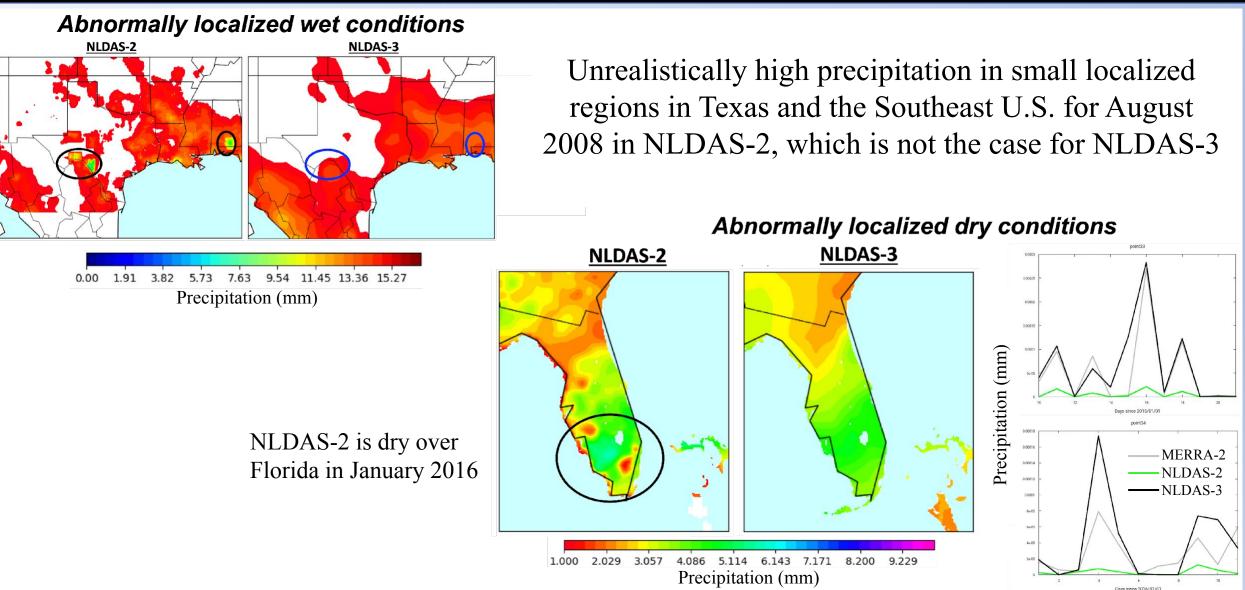


NLDAS-3 provides surface meteorology at 1-km resolution

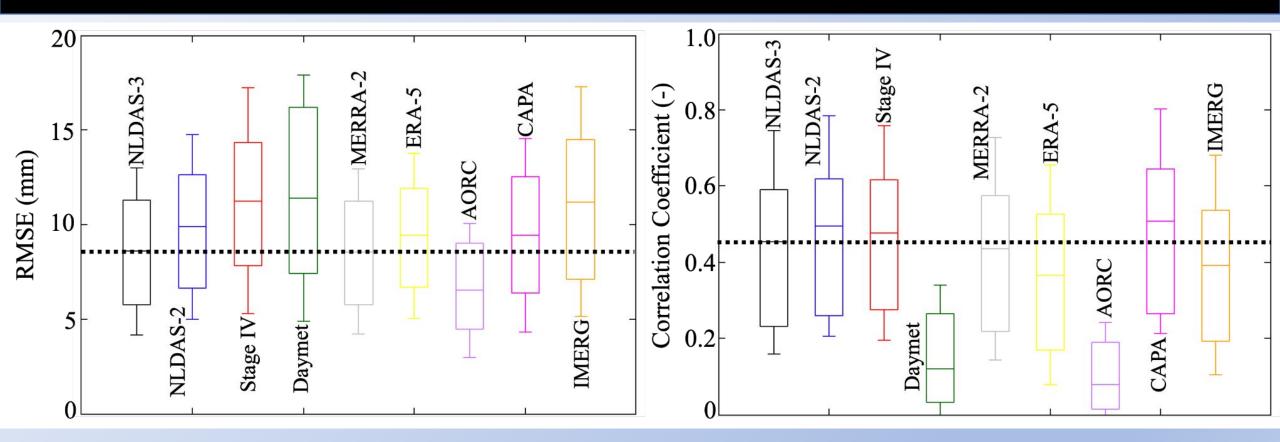

NLDAS-3 provides surface meteorology over North & Central America NLDAS-3 provides surface meteorology ar 1-km resolution (higher than NLDAS-2)



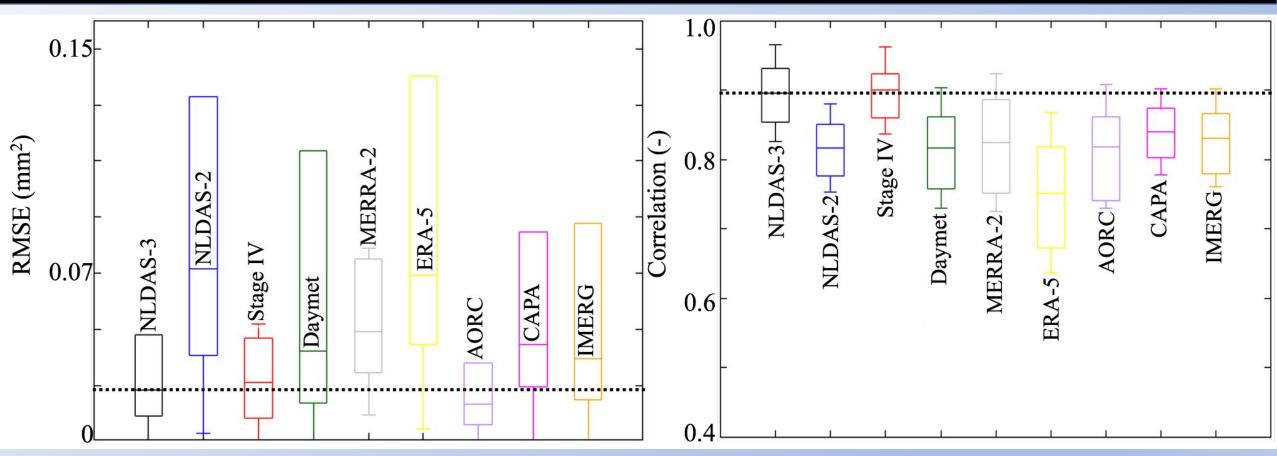
NLDAS-3 Provides Surface Meteorology at 1-km Resolution



NLDAS-3 Overcomes NLDAS-2 Border Issues



NLDAS-3 does not induce local high and low precipitation values



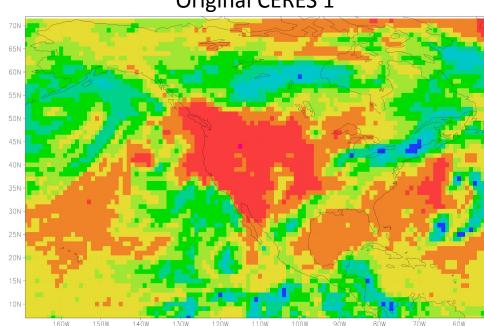
NLDAS-3 precipitation evaluation (vs ground obs)

- AORC outperforms other products by ingesting ground observations.
- NLDAS-3 performs better than NLDAS-2 but slightly below MERRA-2.

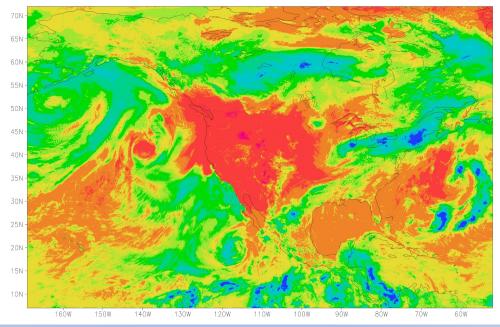
NLDAS-3 precipitation evaluation (extended triple collocation)

The extended triple collocation shows that NLDAS-3 has lower RMSE and higher correlation coefficient than the other products

1-km Surface Meteorology


The other surface meteorological variables are also downscaled to 1-km:

- Surface **temperature**, **moisture**, & **pressure** adjusted via a dynamic (local, hourly) lapse rate method (Whitney et al. submitted).
- Winds adjusted via MicroMet (uses topographic slope, curvature, azimuth).
- Shortwave down using CERES/POWER data → downscaled via slope-aspect correction from 1-km topography.
- Longwave down using CERES/POWER data → downscaled via a dynamic (local, hourly) lapse rate method (similar to surface temperature, moisture, pressure).


Downscaling of CERES Downwelling Shortwave Radiation

Current NASA POWER products from CERES/GEO imagers provide hourly radiative flux estimates at coarser resolutions than the proposed NLDAS-3 framework.

To address this, we developed an ML-based method to downscale 1° CERES fluxes to 4-km using the original 4-km resolution of GOES for NLDAS-3.

NLDAS-2 to NLDAS-3

Attribute	NLDAS-2	NLDAS-3				
Spatial coverage	CONUS (25-53 North / 125-67 West)	North America including Alaska, Hawaii, Puerto Rico, and Central America (7-72 North / 169-52 West)				
Spatial resolution	12.5-km	1.0-km				
Latency	~4 days	~7 hours				
Precipitation	CPC daily 12.5-km analysis over CONUS	Assimilation using gauges, IMERG, CaPA, with MERRA-2/GEOS-IT as background				
Surface meteorology	NARR with constant lapse-rate adjustment	MERRA-2/GEOS-IT/CERES with advanced downscaling				
Land surface models	4 (Noah, VIC, Mosaic, SAC)	1 (Noah-MP)				
Data assimilation	None	Assimilation of remotely-sensed data sets of soil moisture, leaf area index, snow, terrestrial water storage, etc.				
Forecasting	None	Up to 2 week hydromet/hydrologic forecasts				

NLDAS-3 Variables and Data Access

Energy fluxes and states	Latent heat flux, sensible heat flux, ground heat flux		
Surface state variables	Snow water equivalent, snow depth, snow cover, skin temperature, albedo, evapotranspiration, potential evapotranspiration, vapor pressure deficit, leaf area index		
Carbon variables	Gross primary production, net primary production		
Soil and subsurface state hydrologic variables	Soil moisture, terrestrial water storage, groundwater storage, water table depth, surface runoff, subsurface runoff, streamflow		

- Data in **netCDF-4 format**, accessible from the cloud for analysis without downloading large datasets.
- Spatial, regional, and variable subsetting tools for targeted data downloads.
- Cloud-optimized GeoTIFF and GIS collections of selected variables based on stakeholder needs.

NLDAS-3 Data Timeline

Product	Variables	Production Estimate
NLDAS-3 Surface meteorology (hourly; Jan 2001 to present)	Precipitation, SW/LW down at the surface, 2-m T/q, 10-m winds	Beta version available now
NLDAS-3 Open Loop (no surface data assimilation)	Soil moisture/temps, snow, surface fluxes, groundwater, LAI, streamflow	Late summer 2025
NLDAS-3 Full DA (multivariate surface data assimilation)	Same as Open Loop	Late fall 2025
NLDAS-3 Forecasting	Soil moisture, hydrometeorology	2026

For updates on NLDAS-3 data availability: <u>https://ldas.gsfc.nasa.gov/nldas/v3</u>

Precipitation data now on the SMCE/AWS has a known issue with mask / interpolation along coastlines. We have a solution, but it will be a couple of weeks before the corrected data is available: <u>NLDAS-3 Forcing README</u>

NLDAS-3 Data Temporal Resolution

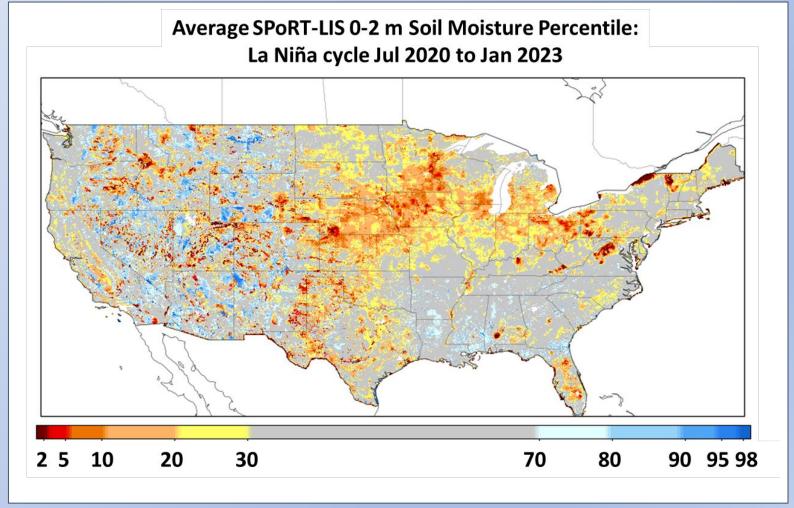
- We are considering providing NLDAS-3 model output data (from both the Noah-MP LSM and the HyMAP river routing model) at **daily-average** temporal resolution only.
- NLDAS-3 surface meteorology and precipitation will still be provided hourly (to drive the models): precipitation, SW/LW downward radiation, winds, surface pressure, 2-m air temperature/humidity.
- Reasoning:
 - a. Reduces data storage by a factor of 1/24th due to smaller file sizes;
 - b. Significant improvement in model simulation speed by writing data only once, minimizing I/O wall-clock time.
- A discussion on this topic is already ongoing on the NLDAS-3 GitHub: <u>https://github.com/NASAWaterInsight/NLDAS-3/discussions</u>

NLDAS-3 Data Temporal Resolution Poll

Workshop Participant Poll:

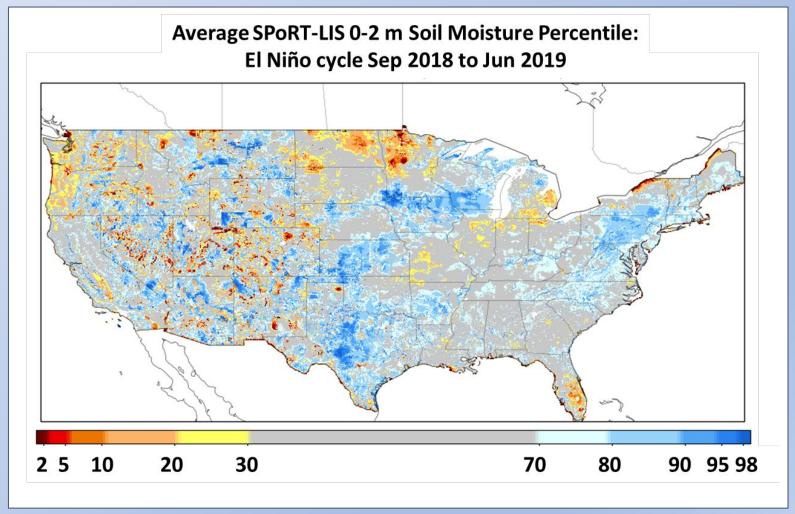
For your use or application, which NLDAS model outputs best suit your needs:

Example Applications: Historic, Real-time, and Forecasts

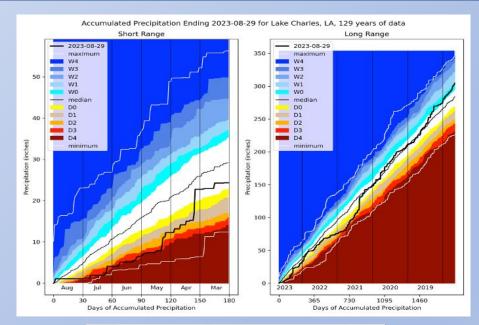

Jonathan Case

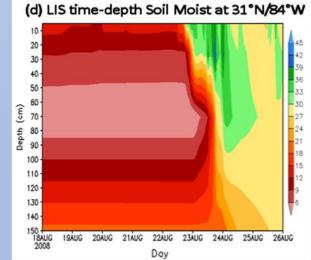
With Christopher Hain, Andrew White, Rob Junod, Vikalp Mishra, and Mitchell Dodson

NASA Marshall Space Flight Center


Historic Soil Moisture Percentiles

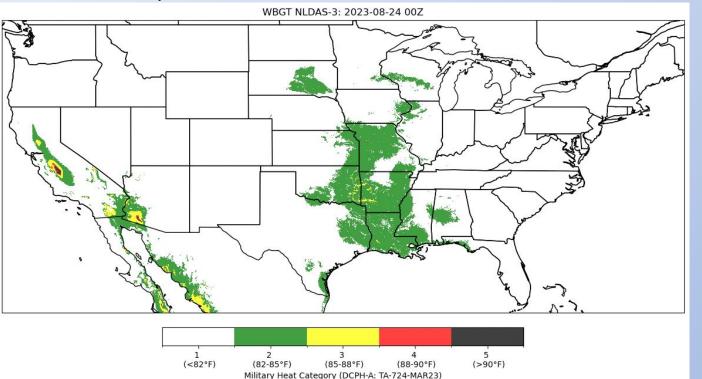
- Examine mean soil moisture percentiles during El Niño and La Niña episodes
- Most recent La Niña and El Niño periods shown at right using SPoRT-LIS daily percentiles, averaged between mid-points of months experiencing at least 0.5° C anomaly in Ocean Niño Index (ONI)


Historic Soil Moisture Percentiles

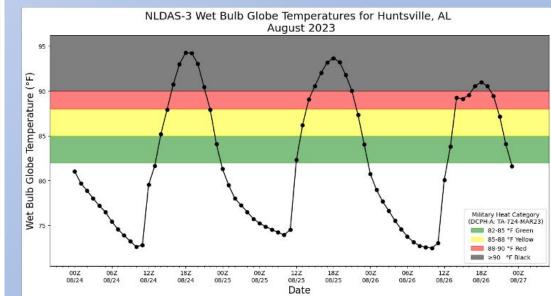

- Examine mean soil moisture percentiles during El Niño and La Niña episodes
- Most recent La Niña and El Niño periods shown at right using SPoRT-LIS daily percentiles, averaged between mid-points of months experiencing at least 0.5° C anomaly in Ocean Niño Index (ONI)

Enhanced Product Ideas for NLDAS-3 Analyses

- Soil Moisture Volatility Index (SMVI) for identifying regions experiencing flash drought conditions based on soil moisture deficits
- Composite/Blended Drought Indicators such as those at <u>https://ndmcblends.unl.edu/Home.aspx</u>
- Dr. Nielsen-Gammon's "Precipitation Fingerprint Plots", derived from NLDAS-3 forcing (upper-right)
- Layered data formats (cloud-optimized geoTIFFs)
- Interactive capabilities to query areas of interest
- County- and HUC-basin masking for bulk stats
- Time-depth cross sections at select locations, or averaged over masked regions (example, bottom-right)
- Soil moisture associated with lightning-initiated wildfires

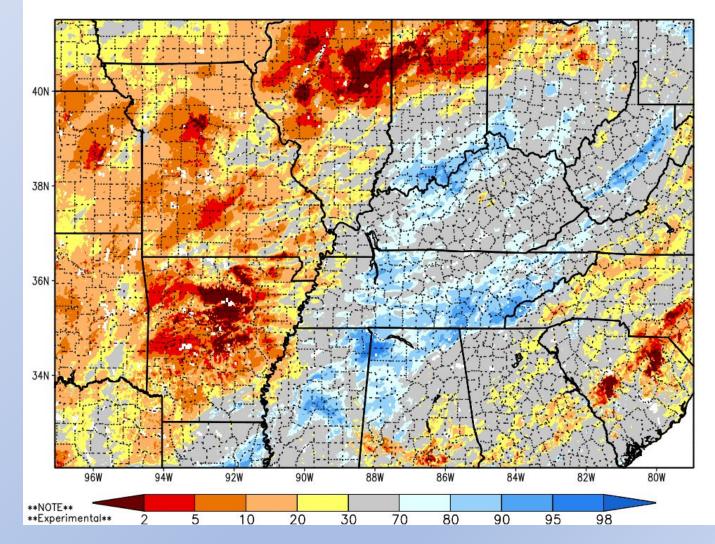


Heat Tool Using NLDAS-3 Forcing


Wet Bulb Globe Temperature (WBGT) Example for August 24-26th 2023

- Hourly WBGT based on NLDAS-3 forcing dataset
- Calculation based on Liljegren et al., 2008
- WBGT heat criteria based on military guidelines (TB MED 507)

Heat Cat	WBGT Index, oF	Easy Work		Moderate Work		Heavy Work		Very Heavy Work	
		Work (min)	Water Intake qt/hr	Work/Rest (min)	Water Intake qt/hr	Work/Rest (min)	Water Intake qt/hr	Work/Rest (min)	Water Intake qt/hr
1	78º - 81.9º	NL	V_2	NL	3/4	40/20	34	20/40	1
2	82° - 84.9°	NL	1/2	NL	54	30/30	1	15/45	1
3	85° - 87.9°	NL	34	NL	34	30/30	1	10/50	1
	88° - 89.9°			50/10		20/40		10/50	
	> 90°	NL		20/40	1	15/45		10/50	


Source: DCPH-A: TA-724-MAR23

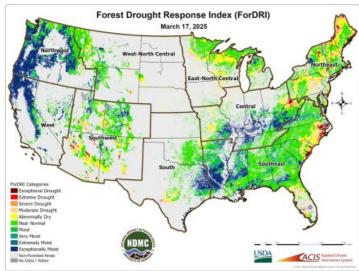
Forecast Soil Moisture Percentiles

- SPoRT currently generates 14-day forecast soil moisture percentiles, driven by GFS forecast precip
- For NLDAS-3 forecasts, we envision:
 - 14-30 day forecasts, bridging gap from short-term forecasting to S2S
 - Deterministic and ensemble outputs
- Forecast ensemble proposal:
 - Daily spread of forecast LSM solutions, forced by all GEFS members
 - Probabilities of soil moisture or other variables falling below or exceeding threshold percentiles
 - Soil Moisture Volatility Index for flash drought prediction

SPoRT-LIS 0-100 cm Soil Moisture percentile valid 02 Apr 2025

The National Drought Mitigation Center's Use of NLDAS: Data and Needs


Brian Fuchs & Dr. Mark Svoboda

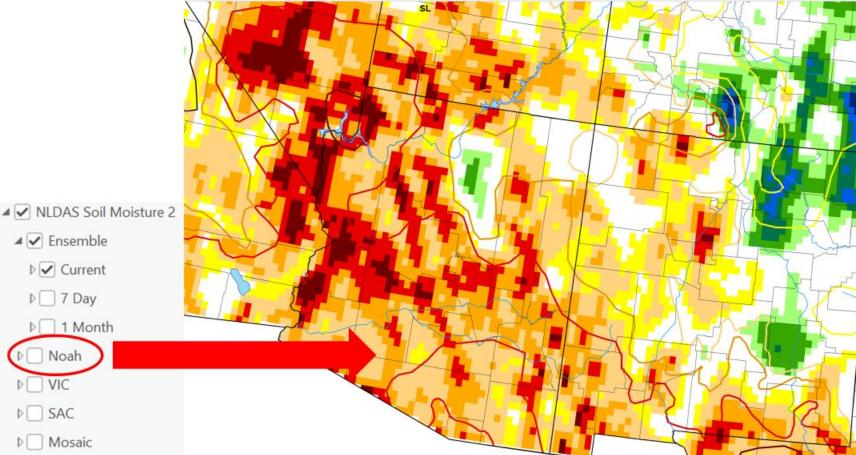


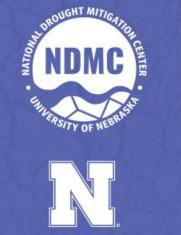
NLDAS-3 Stakeholders Workshop April 10, 2025

Current uses of NLDAS data:

- Legacy "blends" of short- and long-term drought products
 - <u>https://ndmcblends.unl.edu/Legacy.aspx</u>
- New NDMC Composite Drought Indicators (CDI's)
 - <u>https://ndmcblends.unl.edu/Home.aspx</u>
 - Flash drought CDI
 - Short-term CDI
 - Mid-term CDI
 - Long-term CDI
- NDMC's Quick Drought Response Index (QuickDRI)
 - <u>https://quickdri.unl.edu/Home.aspx</u>
- NDMC's Forest Drought Response Index (ForDRI)
 - https://fordri.unl.edu/
- Radiation and Humidity values are used in the GridMET processing of PET which we are utilizing in various products and calculations

Current uses of NLDAS data:

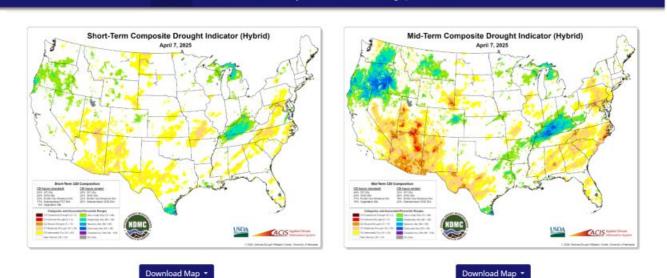

- The United States Drought Monitor (https://droughtmonitor.unl.edu/) Authors utilize all the NLDAS soil moisture products in the weekly operational production of the USDM map. The Authors use the current, 7-day, and 1-month values for
 - NOAH
 - VIC
 - SAC
 - Mosaic
 - Ensemble


Noah

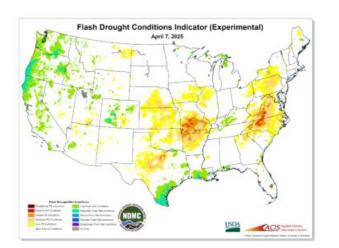
VIC

▷ SAC

Mosaic



Composite Drought Indicators using NLDAS-3


Contact

NDMC Composite Drought Indicators

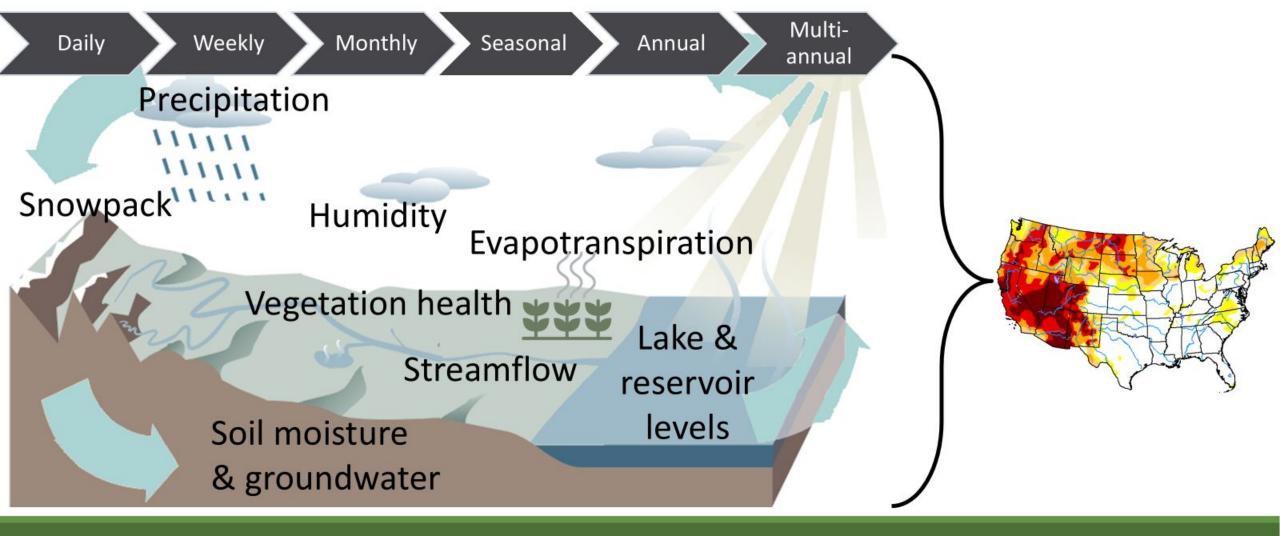
<complex-block>

NUGHT MITH

- Will integrate NLDAS-3 into the Machine Learning processes to incorporate new variables
- Investigate how new variables in NLDAS-3 can enhance current CDI's especially for Flash Drought

Download Map

Needs going forward.....


- Continued support and dissemination of current products.
 - Full Period of Record
 - API/Data services availability
- A longer period of record (POR); back to 1948 similar to what GLDAS provides if possible.
- Vegetation greenness going back to 1948 for vegetation anomalies.
- Surface and baseflow runoff affecting adjacent grid cells (if this is not already being done) including the streamflow amount for affected cells.
- 1-week prediction of values using NCEP model data (HREF/SREF/NAM) for variables provided currently where it is possible.

New uses going forward in NLDAS-3....

- Incorporating the data for Alaska, Hawaii, Puerto Rico into the weekly USDM production.
- Using the North and Central America data in the NDMC CDI work.
- Provide daily values (sum/max/min/mean) where applicable.
- Transition all soil moisture uses to Noah-MP in NLDAS-3
 - Incorporating into NDMC's suite of CDI's
 - Other NDMC operational tools
 - US Drought Monitor production
- We will investigate other variables due to improved latency (especially precipitation)
- Are there plans for GLDAS effort?

The USDM incorporates multiple types of data & multiple timescales

NLDAS-3 will provide consistent and near real-time data for water resource monitoring

Table 2: List of expected Noah-MP LSM output variables from HydroGlobe.

Variable	Short Name	<u>Units</u>
Surface net downward shortwave flux	SWnet_tavg	W m ²
Surface net downward longwave flux	LWnet_tavg	W m-2
Surface upward latent heat flux	Qle_tavg	W m²
Surface upward sensible heat flux	Qh_tavg	W m ²
Downward heat flux in soil	Qg_tavg	W m ²
Snowfall rate (frozen)	Snowf_tavg	kg m-2 s-1
Rainfall rate (liquid)	Rainf_tavg	kg m² s¹
Total evapotranspiration	Evap_tavg	kg m⊴ s⊴
Surface runoff amount	Qs_tavg	kg m-2 s-1
Subsurface runoff amount	Qsb_tavg	kg m² s-
Surface temperature	AvgSurfT_tavg	к
Daily minimum surface temperature	AvgSurfT_tavg_min	к
Daily maximum surface temperature	AvgSurfT_tavg_max	к
Liquid water content of surface snow	SWE_tavg	kg m-2
Snow depth	SnowDepth_tavg	m
Soil moisture - 4 layers [0-10cm; 10-40cm; 40-100cm; 100-200cm]	SoilMoist_tavg	m₀ m₀
Soil temperature - 4 layers [0-10cm; 10-40cm; 40-100cm; 100-200cm]	SoilTemp_tavg	к

Potential evapotranspiration	PotEvap_tavg	kg m-2 s-1
Vapor pressure deficit	VPD_tavg	Pa
Vegetation transpiration	TVeg_tavg	kg m ⁻² s ⁻¹
Bare soil evaporation	ESoil_tavg	kg m-2 s-1
Total canopy water storage	CanopInt_tavg	kg m ²
Water table depth	WaterTableD_tavg	m
Terrestrial water storage	TWS_tavg	mm
Groundwater storage	GWS_tavg	mm
Surface snow area fraction	Snowcover_tavg	[-]
Gross primary production	GPP_tavg	g m-2 s-1
Net primary productivity	NPP_tavg	g m² s-1
Net ecosystem exchange	NEE_tavg	g m² s1
Leaf area index	LAI_tavg	[-]

Variable	Short Name	Units
Streamflow	Streamflow_tavg	m3 s-1
River depth	RiverDepth_tavg	m
Flooded fraction	FloodedFrac_tavg	[•]
Surface water elevation	SurfElev_tavg	m
Surface water storage	SWS_tavg	mm

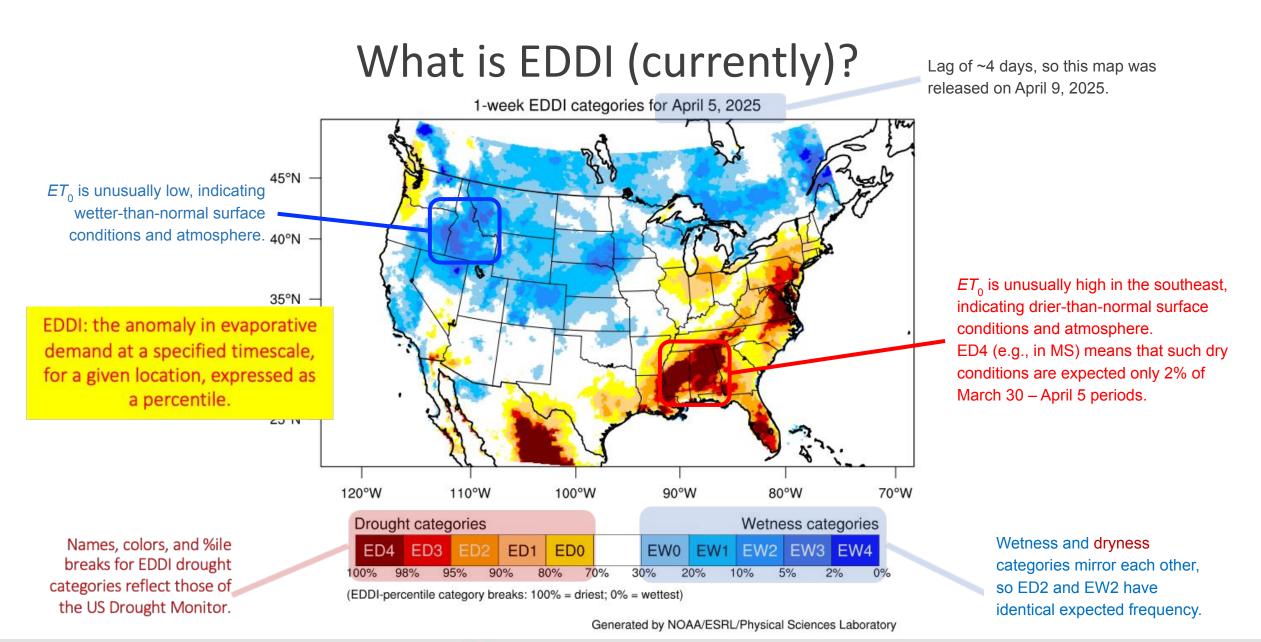
Thank You! Questions?

DROUGHT.UNL.EDU e | ndmc@unl.edu

f /NationalDroughtMitigationCenter

Brian Fuchs bfuchs2@unl.edu

Using NLDAS drivers in drought monitoring: the Evaporative Demand Drought Index (EDDI)


Mike Hobbins

University of Colorado-Cooperative Institute for Research in Environmental Sciences (at NOAA-Physical Sciences Laboratory)

Cooperative Institute for Research in Environmental Sciences University of Colorado **Boulder**

NLDAS-3 Drought Monitoring Workshop, April 10, 2025

CIRES

What is EDDI (currently)?

AGRICULTURAL DROUGHT - soil moisture - grazing health - ET

HYDROLOGIC DROUGHT - streamflow - snowfall

FIRE-RISK MONITORING - weather

- fuel loads

Ecological Drought

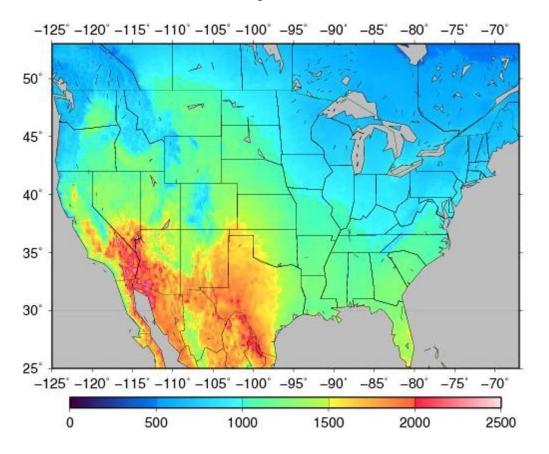
What is EDDI (currently)?

EDDI is derived from 40+ years of daily reference ET, ET_0

Penman-Monteith reference ET (FAO-56):

$$ET_{0} = \frac{0.408\Delta}{\Delta + \gamma (1 + C_{d}U_{2})} (R_{n} - G) \frac{86400}{10^{6}} + \frac{\gamma \frac{C_{n}}{T}}{\Delta + \gamma (1 + C_{d}U_{2})} U_{2} \frac{(e_{sat} - e_{a})}{10^{3}}$$

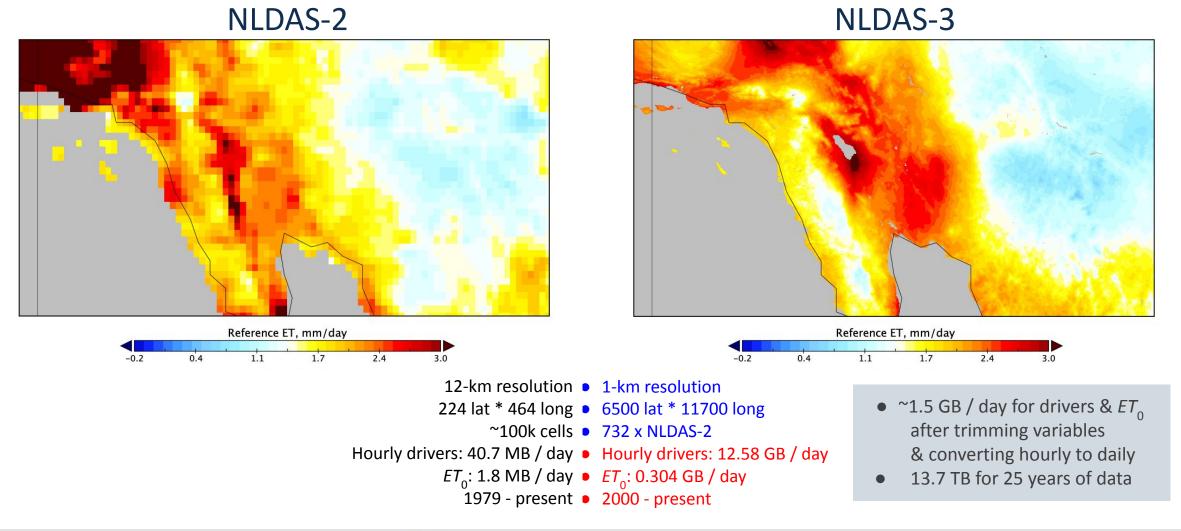
Drivers from NLDAS-2:


- temperature at 2 m
- specific humidity at surface
- downward SW at surface
- wind speed at 10 m

ET_0 dataset specifications:

- daily, Jan 1, 1979 present
- latency ~ 5 days
- 0.125° lat x lon, CONUS+ (to 53°N)

Mean annual *ET*₀ (mm), 1981-2010



Extending EDDI

- Current operational constraints:
 - Latency ~4 days
 - Geographic extent 25-53°N
 - Trans-border issues US/Canada discontinuities
- Stakeholders' un-met needs:
 - Lower latency wildfire management, operational drought monitoring, and flash-drought detection
 - Higher spatial resolution *ecological drought monitoring and analysis*
 - Larger spatial extent Canada, AK, HI, PR

ET_0 : NLDAS-3 vs. NLDAS-2

Challenges in moving EDDI to NLDAS-3?

- Verification
 - EDDI and ET_0 against NLDAS-2
- Data size
 - data format within NetCDFs?
 - floats or compressed?
 - \circ $\,$ pre-processing on NASA's servers
 - e.g., generating daily means from hourly data
 - downloading geographic chunks
- Period of record (full EDDI requires ~40 years)
 - use open-loop (non-DA) runs for longer POR?
 - ranks vs. percentiles for shorter POR?

Questions?

Cooperative Institute for Research in Environmental Sciences University of Colorado **Boulder**

Data Access, Analysis, and Feedback

Dr. Sid Chaudhary

NASA Marshall Space Flight Center

https://github.com/NASAWat erInsight/NLDAS-3.git

P develop - NLDAS-3 / data_access /

siddharth0248 minor edits to access

Name

...

Cloud_request_access_analysis.md

download_from_aws.md

NLDAS-3 Forcing Data Stored at Public AWS Storage (s3) ₽ develop -NLDAS-3 / user_data_notebooks / Ð rra-na Updated comments + documentation Access it via Cloud Access it in Local Name ... Jupyter Hub, Laptop, Clusters, Python/R scripts 1-read_aws_data.ipynb Storage Device 2-create_timeseries.ipynb 3-temp_change_map.ipynb 4-clip_data.ipynb Don't need to Download the Data use_case-hurricane_harvey.ipynb Download the Data using command line Q Use Laptop or Cluster Use your computation Resources or Request Access for Water Insight OSS Run Analysis https://bit.ly/nldas-3-hub

Needs and Capabilities - Breakouts

Ryan Wade

We will split into two breakout groups for more detailed Q&A, feedback and discussion on drought monitoring needs.

Meteorology/ Model Forcings/ Data Assimilation

Kim Locke, Fadji Maina, Kristen Whitney, David Mocko, Sujay Kumar, Melissa Wrzesien

Applications/ Downstream Products

Ryan Wade, Molly Woloszyn, Jonathan Case, Chris Hain, Brian Fuchs, Mike Hobbins, Jessica Erlingis

For a summary of participant feedback and discussions from the breakout sessions, please go to the link on the NASA NLDAS-3 webpage: <u>https://ldas.gsfc.nasa.gov/nldas/v3</u>

Wrap-up & Next Steps

Dr. Chris Hain

- Key takeaways from the breakout discussions
- Continue the conversation (provide feedback and ask/answer questions) at NASA Water Insight GitHub discussions page: https://github.com/NASAWaterInsight
- Get involved with the NLDAS-3 Drought Focus Group to co-develop new applications and use case examples (email Kim Locke: <u>kim.a.locke@nasa.gov</u>)
- We will send out workshop slides with a feedback summary and a brief survey for any additional questions and feedback

Thank you for participating!